Slicing Behavior Trees

for Verification of Large Systems

Nisansala Prasanthi Yatapanage

B.E. (Honours Class I)

INSTITUTE FOR INTEGRATED AND INTELLIGENT SYSTEMS
SCIENCE, ENVIRONMENT, ENGINEERING AND TECHNOLOGY GROUP

GRIFFITH UNIVERSITY

Submitted in fulfillment of the requirements of the degree of

Doctor of Philosophy

October 2011

ABSTRACT

It is essential to ensure the correctness of softagstems, especially for large and safety-ctitica
applications. Detecting problems earlier in thévgafe cycle, such as in the specification and desig
phases, would significantly reduce the costs irshRigorous automated approaches are ideal for
detecting such problems. Model checking is an aatedwerification technigue which exhaustively
searches the state space to determine whetherel afitide system satisfies a given property. How-
ever, model checking suffers from state explogioayenting large systems from being verified.

The Behavior Tree specification language emsablaineers to handle the complexity of large
systems, by allowing them to focus on one requirgrata time. Behavior Trees maintain strong
links to the original requirements of the systeimere has been support for automatic translation of
Behavior Trees into model checking languages. Hewealue to the state explosion problem, large
Behavior Trees still cannot be verified.

Program slicing is a reduction technique wlaatomatically removes irrelevant portions of the
program, usually applied for improving understagdind debugging. In this thesis, a technique for
reducing Behavior Trees prior to verification isposed, based on the concepts of program slicing.
The technique is shown to preserve all properpiesified in the language CTk, which is CTL
without thenextoperator. Thus, a property will be proved on ti@ed model if and only if it is
proved on the original model. The slicing approiaattemonstrated on two case studies, producing
significant reductions in verification time.

A new optimisation technique is also proposedillow the Behavior Tree to be reduced even
further, by eliminating nodes which are infeasifllee technique is able to reduce slices more than
previous approaches. The optimisation techniqatstsshown to preserve CTLproperties.

No other slicing method is able to preservepprties which contain theextoperator. Another
contribution of this thesis is a novel method fasqucing slices that are able to presénieCTL",
including properties containing timextoperator.

This technique is shown to be correct by estaiblg a new form of branching bisimulation, known
asnext-preserving branching bisimulatidiWeak forms of bisimulation are normally unabl@te-
serve properties containing thextoperatorNext-preserving branching bisimulatiégé shown to
preserve full CTL, which includes theextoperator. The new form of bisimulation allows sani
techniques to be developed for other modellingdaggs as well, since all that is required is tawsho
the establishment of a next-preserving branchisignoilation.

The final outcome of the thesis is a slicingrapch which can effectively reduce Behavior Trees,
in order to allow large systems to be verified tRermore, the thesis gives useful theoretical tesul
about property preservation of full CThy next-preserving branching bisimulation

This work has not previously been submitted foegrde or diploma in any university. To the best of
my knowledge and belief, the thesis contains n@ri@@{previously published or written by another
person except where due reference is made in ¢isestitself.

Nisansala Yatapanage

This thesis is dedicated to my father Dr. Kamalayanhage, my mother Ranjani Yatapanage and
my sister Sadhana Yatapanage.

Vi

TABLE OF CONTENTS

Y 013 1 = Yo P RRURRR l....
Statement Of OFgINAIILY...........cooiiiii e smrerne e e ete st et e e e sreeare e I
LI 0] L= 0 O 0] 1= | 3SR Vil
IS o o [0 SRR IX..
LISE Of TADIES. ... e rmreme bbbt sa e e s Xl
F o T0ATY F=To [1= 1=) S XMI
U1 o] o= 11 o] LSS XV
CHAPTER 1 INTrOTUCTION ..couiviiiiiiie it immmeme ettt ettt mmmmms et nt e e e 1
1.1 THESIS ODJECHUVESoveiiiiiiieie e s ettt e ettt e et e e e et e e s vmmmnmt e e e nb e e e e eentaeeeeannrneeas 3
1.2 REIAEA WOIK.....coi ettt ettt e s mmeme st e e e e ennee e e e eeneaeeeeanns 5
CHAPTER 2 BaCKGIOUNG......c.co ittt ettt e ettt e e e smmeeme e e e sntae e e e aneeeeeeenees 7
P2 1Y/ Fo To [= I @ =T o] (1 T PRSP 7
2.1.1 TranSition SYSEMS.......cocuuiiiieeeites et eesiseesssneesanneeasnreesssesemmmeme e sneeeaas 7
2.1.2 TeMPOTAl LOGIC. ... ceiiiueieireeeiiieee sttt e et e s mmmmms e 8
P o (ol 7= 1 4IRS 1Tt o SR 10
2.2.1 Slicing of Sequential Programscccccceveeieiiiieeeeeiiee e 10
W22 Lo g = 0] 1= 11T OO 13
2.2.3 Slicing Concurrent Programsc.uvcccceereeeeiiiieeeeesieeeeessieee e s sesvsssmmmems 14
2.2.4 Program Slicing vs. Slicing of Models........coocereieiiiiiiiiiiciee e 16
2.2.5 BISIMUIALION ...ooiiiii et st 18
2.3 BENAVION TIEES ...eeiiiiiiiiie e sttt e e ettt e e e e an et e e e e s mmmmm st te e e e e enneeeaeeanneeeens 21
2.3.1 Behavior Tree NOTAIONcccuiiiiiieiiee et smmmene e 22
2.3.2 Requirements Translation and INtegrationeeececeeeeeiicieeeesiinneeeen . 26.
2.3.3 Model Checking BENAVIOr TIEES..........coummmmmmmeeertieeeieee e 27
CHAPTER 3 SIlicing BENAVION TIEESciiiieeeceee ettt ettt smmenmre et e e e 29
3.1 Creating a BT Control FIOW Graphccceeeeeeoiieei e 30
3.1.1 Concurrent BranChiNg.........cc.eeeiueiiiiieecmmree e emmmeme e 32
3.1.2 Alternative BranChing...........cocueeiiiiimmen e mmmmmee e 33
3.2 BT Control Flow Graphs as Transition SYStemMIS............cccveviviiiieeeeiiiiee e e s veeeeee e 33
3.3 DEPENUENCIES ...ttt eememeee ettt e e e e semmmmme e st e e s sbe e e asne e e nnnneean 38
3.3.1 Control DEPENUENCEococuiieiiiieiie et 39
3.3.2 Data DEPENUENCEccevveee et s e et e e e e eatae e e e s entae e e e s ess s s see e s 43
3.3.3 Interference DEPENUENCEccuvvieiiiceeeeme ettt s 43
3.3.4 MeSsage DEPENUEINCEccoiueieiieeeiemmmmeme ettt e emmmeme 44
3.3.5 Synchronisation DEPENTENCEcccuviccmeeeiee e 44
3.3.6 Termination DEPENAENCE.........cccvviieeiceeeeeeiie e e 45
3.4 Creating the SHCEccoviiiiii et emmeeme e 46
3.4.1 Observable vs. Stuttering NOUEScommmmeeerreeeiiieniieeeniee e emenn b7
342 BlanK NOGEScooiiiiiiiiie ettt e e 47
3.4.3 Reversion and Reference NOAES.............cmmeeeeeeeeeeeeniiieeesnieeeeennneenee- 48
3.4.4 Re-forming the N0des INt0 @ treeccceeeeeiiiii i 55
B JE S [T T o A o o] 111 ot o I SRR 59
3.6 PrOOf Of COMECINESS.....cciutiiiiiiiieeeeeee ettt sttt st smmeeme st e e snbee e naree e 63
CHAPTER 4 Infeasible Paths...........o oo 73
4.1 Threaded Witnesses fOor BENAVION TrES e vvii it e 73
4.1.1 Threaded WILNESSEScueiieieiieee s o et estaeesseeesseeesbeessnssmmmmnreeeens 73
4.1.2 NeSted THreadsS.co ittt e 75
4.2 MOFE PrECISE SIHCES ...eeiiiieiiiie e eeiiee ettt rmmeeme e et e e e e anneee e e e anees 76

o R 101 (== 1Y [o] [T o= 11 F TR 77

4.3 PrOOf Of COMMECINESS....ciiieeeeeeee it eee ettt e st e e et eera e e seeeteee s somm—— e seeesseesraaeeeeees 81

4.4 SIICING AlQOITENM ... mmmms e e e 83
4.4.1 Side Note: Application t0 Programs.........ccceeeeeeeioiieeeenniieeeeeieee e eeeecee 85
CHAPTER 5 Slicing with the NeXt OPErator ...ccuce.coccvieeeiiciiiee e vmmeemr e eeree e 87
5.1 The problem of removing StUttering NOUES. ceeee.eccvvveee e 87
5.2 Process of Slicing with the Next Operator.............cccceeiiiieees e 88
5.2.1 Identifying the relevant I0CatioNScceeeeeeeiiieeee i e 89
5.2.2 Approach for Preserving NeXt.........cc.uuviccceeiueeieiciiee e 91
5.2.3 Number of Stuttering Transitions ReQUIred .. .occccvoooveeeiieeiiiieeiee e 2.9
5.3 Preservation Of FUIl CTLY ...ttt 92
5.4 Next-Preserving Branching Bisimulation of Bebawrees.............ccccocvevviiieeenie, 105
5.4.1 Locations Requiring EXtra NOAEScommmeeeeeiiieieeeiiieeeessiee e 105
5.4.2 Finding Extra Stuttering NOUES ... uuieemiieee e e 108
5.4.3 Proof Of COIMECINESSccuuiiiiiiieiiies ettt et ne e s veemmm s 109
CHAPTER 6 CaSE SHUAIES.cciueiiiiiiimeeeamieee ettt sttt et e i emmms e st nee e sbneeens 111
6.1 SICING IMPIEMENTALION ...t meem e emmmne e 111
6.2 Mine PUMP CaSE STUAYcocueiiiiiiiimmmeem ettt mmmmmr e 113
6.2.1 Behavior Tree of the Mine PUMPuommmeeeeeeieieeeesciiieeeeesciiiee e s 113
6.2.2 Slicing and Verification of the Mine PUMPccceevieiiiiiiiieee e 116
6.3 Hospital Information System Case Study. ..coweem........ P B2 |
6.3.1 Behavior Tree of the Hospital Information System .. 121
6.3.2 Slicing and Verification of the Hospital Informati®ystem.c.ccccvveenne 124
CHAPTER 7 CONCIUSIONoeiiiiiiiiie ettt e e et e e s mmmme s s s e e e e e neeeeeeenneee 133
7.1 CONDULIONS ... et reeemm et 133
T.2 FULUIE WOTK ...ttt ettt et e e e e s 134

REFERENCES. ... o e e e et e e e 135

L1ST OF FIGURES

Figure 1. The Model Checking PrOCESS ... oot 1
Figure 2. Model Checking Behavior Trees wWith SECIn...........ccccoveveiiiiie e s e 2
Figure 3. An Example Transition SYSEMccceee it mmmme e 7
Figure 4. Relationship Between CTL*, CTL @nd LT oo oiiiiiieiieeee e 9
Figure 5. Overview of Program SHCINGccoceiieiiiiiie e emmmeere e 10
Figure 6. A Simple Program and its CorrespondinGCE.............ccceeeiiiieiee e i e o e 11
Figure 7. The PDG of the CFG iN FIQUIE 6. ..cceeeiiiiieiiie e mmmm e 13
Figure 8. Example CFG of @ Java Program ... e e 15
Figure 9. Behavior ENQINEEING PrOCESSccueeeeiiiiieeieiciieee e eeitee et semmmesre e e sentae e e e s ennaeeas 21
Figure 10. A BEhavior Tre@ NOUE v eeeeeeeiieee e et e ettt e e et ee e e e eneeeeeeaenneeens 22
Figure 11. Behavior Tre@ NOUE TYPESoei o ceereeeeiiee et ettt eemmmemee e e e e e e e e eneeeeas 23
Figure 12. Sequential and AtomiC CONLIOl FIOW cemn...vveeeiiiiieeecciiece et 23
Figure 13. Behavior Tre@ FIAgSoo ittt e e 24
Figure 14. Set Operation NOUES.............cmmmmeeureeaitreeiieeesieeesseeesbeessmmmems e e sreeesneeesnneeeans 25
Figure 15. For-all and FOr-one NOUESccoceeoeiiiiiiiie et e st e e e aaae e e 25
Figure 16. Identifying Matching Pre-CoONAitioNS..c.........coocveiieiiiiie e e 27
FIQUIE 17. FINAI IBT ...ttt ettt e e ettt e e s smmmeme e e e et e e e e ente e e e e enneeeeeenees 27
Figure 18. Overview of the Behavior Tree SIICINQE/SS............ceveeiiiieieiicieee e e 29
Figure 19. Representing a SeleCtion NOUE ..cecceeevveeiiiciiiiee e e 31
Figure 20. Representing a GUArd NOEccoeeeeieiiiiiiei et 31
Figure 21. Threads in BENAVIOr TTEESoommmrreeiiiieiiiee ettt mmmmmr e 33
Figure 22. If-else Branching in Programscccee..ooccuiiii e emmmeere et 33
Figure 23. EXECULiON Of @ REVEISIONcovccieiiiee ittt e e 36
Figure 24. Example to illustrate ready SetS. m . e e e 38
Figure 25. BT Control Flow Graph with BranChing..............cccccoeoivii e 40
Figure 26. A Controlling Node with Branching Desgents...............ccccceeevcivveeevciieeeeccineeees 41
Figure 27. Control Dependency 10 @& REVEISION....c....iiuiiiieiieee e e e e 42
Figure 28. Example of slicing without terminatioBp@Ndence.ccccveeieiieeeeiciieeeeeeeeene 46
Figure 29. Change in Loop Caused by Using CIOSBEESLOT...........c.ccccvveeeeiciiee e cciee e 49
Figure 30. Multiple ClOSESt DESCENUENTS ... commumeeieeiieieeeiiieaeeeeieie e e e e emmmeee e e e e eneeeeeeeans 49
Figure 31. Unnecessary JUMP NOUESoommeerimriiiiiiiieeeessiiiee e emmmeme e s 51
Figure 32. Reversions Producing Different EXeCUTIOBICESceveeviieeeeiiiiiieeccceeeeecieee e 51
Figure 33. Example of two reversions with the sagendencies..........cccccooccvveeeeiivvieeecenns 52
Figure 34. Divergence Caused BY REVEISIONS . cvvereeiiiiiieeiiiiieeessieeeessmmeemeeeesnneeeeesenens D4
Figure 35. Branching Involving a Blank NOE.ccoueiiiiiiiiie e emmmeere e 57
Figure 36. Re-forming a slice iNt0 @ BENAVIOr T E........coiviiiiiie i emmmeere e 58
Figure 37. Re-forming a slice into a Behavior Tueag two place-holder nodes.................. 58
Figure 38. Example with a for-all NOAe.ccccoooiiiiiee e 58
Figure 39. Cases whengexecutes abut NOt at..............ccoceeeeiiiiiie e, 65
Figure 40. Example BENAVIOr TIEE........oi et e e e 75
Figure 41. Dependence Graph for the Behavior Trégégure 40.c..ooceveeiiiiiee e s e 75
Figure 42. Threads in BENAVIOT TIEES ... oo ecrrreeeiiitieieeiiiieeaessitteseessmmmemsesssssseeasssnssesessans 76
Figure 43. EXample BENAVION TIEE........ciiv ittt e e 79
Figure 44. Dependence Graph for the Behavior Tréggure 43.cooceeeeiiiiee e 80
Figure 45. Example BENAVION TIEE........ciiv ittt e e e nrae s 80
Figure 46. Dependence Graph for the BT in Figure.45..........cocvvvviiiciii e 81
Figure 47. The Stuttering ProbIEM. oo eeiiiieiie et smmmme e 87
Figure 48. A Model and ItS SIHICEcoiieee et emmmr e 89
Figure 49. A Model and itS SICEvviieieece e 90

Figure 50.
Figure 51.
Figure 52 .
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

A model and its slice, to illustratef@li€nces in AXE or EXA formulas................. 91
The two paths for LEmMma 8 ...t 95

The two paths for Lemma 9coovie e 97
A Screenshot of the Integrare DrawingERa..........cceeeeiiciveieeiiiieee e ecmeiee e 112
Screenshot Showing Translation POp-UONI.coccveveeiiiiiee e e 112
The Slicing Tool as Part of INtegrare............cccoovieiiiieiiie e 113
Overview of the Mine Pump Behavior TLEE........c.ccccceveeiiiiiee e veeeee e 114
Part of the Controller TRread ...cocceeoo e e 115
CO Sensor Thread and Environment COaTIE..........cccvevieeeicieeiiieesemmeeee s 116
Overview of the Hospital Information f&ys Behavior Treeccccoecveeienne. 122
Part of the Manager thread. ... 123
Part of the Resident and Doctor threads............coceieiiiiin e 124

Xl

LI1ST OF TABLES

Table 1. Representation of Nodes in the BT Comiti@lv Graph ..o e 32
Table 2. Some of the Dependencies Relevant forof ke Mine Pump..........cccccoeevvvieennn. 118
Table 3. Original Model vs. Slice for Th1 of theMdiPump ... 119
Table 4. Dependencies Relevant for Th3 of the NROBIP..........ccooooiiiiiiiiie e, 120
Table 5. Original Model vs. Slice for Th2 of themdiPumpcccooooeeeii e 120
Table 6. Original Model vs. Slice for Th3 of themMdiPumpccccoooiiiiii e 120
Table 7. Dependencies Relevant for Thl of the HIS............ccooiiiiiini 126
Table 8. Original Model vs. Slice for Thl of theSl..........ooooiiiiiiiii e, 127
Table 9. Verification TIMeS fOr ThL........ooiiiiii e e 127
Table 10. Dependencies Relevant for Th2 of the. HIS.............cccoiii e 128
Table 11. Original Model vs. Slice for Th2 of th&8H............coooiii e 128
Table 12. Verification TiMeS fOr TN2........coeeeiiiiieiece e 129
Table 13. Some of the Dependencies Relevant foroTb8 HISccooiiiieiiiiniiv e 130
Table 14. Original Model vs. Slice for Th3 of th&8H...........ccooiiii e 130

Table 15. Verification TIMES fOr TR3S. ...ttt e s emmenma s e e e e e e e e e e e ees 130

X

ACKNOWLEDGEMENTS

First of all, I would like to express my deepgsttitude to my supervisor Kirsten Winter, for all
the time and effort she spent on selflessly chec&imd improving my proofs, reading through my
thesis and discussing my ideas and for all theaguaid she gave me. Her advice and encouragement
throughout all stages of the project were invaleasid will always be of benefit to me.

Next, I would like to thank my former supervisthe late Geoff Dromey, for giving me the oppor-
tunity to work with the Behavior Tree research graund for all the support and guidance he has
given me over the years.

I am grateful to Abdul Sattar, for replacingdH as supervisor towards the end of my projedt an
for always being supportive of me. | would alselik thank Larry Wen for taking over as secondary
supervisor.

I would like to sincerely thank Natalie Dunstior always efficiently taking care of the admirads
tive issues and ensuring that | had all the feedlit required.

Thank you to Peter Lindsay for giving me thpanpunity to be a visiting researcher at the Univer
sity of Queensland and for providing me with acdeshe UQ computing facilities to perform my
case study experiments. | would also like to thaa&d Zafar for permitting me to use his Behavior
Trees for my case studies.

I would like to thank the following Behaviorde researchers for all the useful discussiongloger
years and for giving me the opportunity to workhattiem on many projects: (in alphabetical order)
Rob Colvin, Geoff Dromey, Lars Grunske, lan Hay@sna Kirk, Sentot Kromodimoeljo, Peter
Lindsay, Toby Myers, John Seagrott, Cameron Sradlry Wen, Kirsten Winter and Saad Zafar.
Thank you also to Michelle Christie for giving neceuragement over the years.

This work was supported by the following schsitéps:
Australian Postgraduate Award (2010 - 2011)
Griffith University Postgraduate Research Scholaré2008 - 2010)
Institute for Integrated and Intelligent System$Tdp Scholarship (2008)
Institute for Integrated and Intelligent SystemstBraduate Research Scholarship (2007 — 2008)

XV

PUBLICATIONS

Publications by the author arising from this work:

Yatapanage, N., Winter, K., & Zafar, S. (2010)cilg Behavior Tree models for verifica-
tion. In: C. S. Calude & V. Sassone (EdBrjpceedings of the 6th IFIP International Confer-
ence on Theoretical Computer Science (TCS2Qd2)125-139): Vol. 323 of IFIP Advances
in Information and Communication Technology, Speing

Related publications by the author:

Lindsay, P. A., Yatapanage, N., & Winter, K. (201Q)it Set Analysis Using Behavior Trees
and Model Checking=ormal Aspects of Computinbo Appear. (doi: 10.1007/s00165-011-
0181-8).

Grunske, L., Winter, K., Yatapanage, N., Zafar&3.indsay, P. A. (2011). Experience with
Fault Injection Experiments for FMEAlournal of Software: Practice and Experience,
41(11), 1233-1258.

Lindsay, P., Winter, K. and Yatapanage, N. (208B3fety Assessment Using Behavior
Trees and Model Checking, IRroceedings of the 8th IEEE International Conferenn
Software Engineering and Formal Methods (SEFM 20(p). 181-190): IEEE Computer
Society.

Grunske, L., Winter, K. and Yatapanage, N. (20D&fining the Abstract Syntax of Visual
Languages with Advanced Graph Grammars - A Casty &ased on Behavior Tredsur-
nal of Visual Languages and Computit§(3), 343-379.

Zafar, S., Colvin, R., Winter, K., Yatapanage,&Dromey, R. G. (2007). Early Validation
and Verification of a Distributed Role-Based Acc€ssitrol Model. InProceedings of the
14" Asia-Pacific Software Engineering Conference (ARSB07) (pp. 430-437), IEEE.

Wen, L., Lin, K., Colvin, R., Seagrott, J., Yatapgn, N., & Dromey, R. G. (2007). "Inte-
grare" - A Collaborative Environment for Behaviori€hted Design. IfProceedings of the
4™ International Conference on Cooperative Desigsyisliisation and Engineering (CDVE
2007) (pp. 122-131): Vol. 4674 of Lecture Notes in Cantep Science, Springer.

Grunske, L., Lindsay, P., Yatapanage, N. and Wjiler(2005). An Automated Failure
Mode and Effect Analysis based on High-Level DeSgecification with Behavior Trees.
In: Proceedings dintegrated Formal Methods: 5th International Corfiece (IFM 2005)
(pp. 129-149): Vol. 3771 of Lecture Notes in Congplicience, Springer.

INTRODUCTION

Software systems are everywhere. They range fnge &afety-critical applications, such as medi-
cal equipment or aircraft control, to small houdélitems used every day. Designing these systems
without any flaws is a challenge. The systems mustide some degree of reliability to the user,
giving them the assurance that the functions vatkvas expected. For safety-critical applicatitimes,
guarantee of correctness is even more importanthEee reasons it is important to ensure that the
systems have been designed correctly.

Correcting software defects after the systesrbean implemented is significantly more expensive
than if the defects are corrected in the specifinaand design phases. It is therefore preferable t
locate as many defects as possible in these ¢aggsof the software process. Informal specifica-
tions written in natural language are not idealldoating such defects, as the text descriptioas ar
often ambiguous and incomplete. The use of fornealets solves these problems. Formal methods
refers collectively to techniques which have anégs mathematical basis. Formal specification
languages allow the system description to be spddif a precise unambiguous manner. By specify-
ing the informal natural language requirementsfagaal model, defects are much easier to identify.

Techniques such as manual inspections andges® often applied in practice for locating defec
Even using a formal model, manual inspection isilga tedious and error-prone task. Although
testing often catches many defects, it is not &raestive technique, so some errors can still remain
undetected. On the other hand, verification teaesgsuch as model checking, can provide a guaran-
tee that a model satisfies its requirements.

Model checking (Clarke & Emerson, 1982; Quidl&ifakis, 1982) is an automated technique
which exhaustively explores all possible executranes of the system. This provides an assurance
that the system will behave as required undeirallimstances. The overall process of model check-
ing is shown in Figure 1. The system specificatiodesign is first translated into a formal model.
The requirements or properties which the systeegigired to fulfill are also expressed mathematical
ly, in the form of atemporal logic formula. Ttaerhal model and the temporal logic formula are then
given as inputs to the model checker. The modall@reawutomatically searches the state space of the
model, to determine whether or not the model sesishe property in question. If the property does
not hold, the model checker returns a counterex@mgiich is a trace where the violation occurs.

Counterexample
Informal |::> Formal

Specification Model % ’

Model

& Checker \
Property |:> Temporal Proved

Logic Formula

Figure 1. The Model Checking Process

2 Introduction

Despite its advantages, model checking hamiisant disadvantagestateexplosion State explo-
sion refers to the exponential increase in the murobstates as the model increases in complexity.
The large number of states can cause the modetetiecrun out of memory resources or take an
excessive amount of time to return a result. Taisgevent many real-life systems from being model
checked.

A number of methods exist for reducing statgl@sion, such as partial-order reduction (Peled,
1998), Binary Decision Diagrams (McMillan, 199&pstraction (see for example Dams et al. (1997)
and Clarke et al. (2001)) and slicing (Weiser, 198dese can be divided into two classes: techeique
which operate on the internal data structuresefibdel checker and techniques which reduce the
model prior to running the model checker. Intetaahniques, such as Binary Decision Diagrams and
partial-order reduction, can provide significamuetions in the size of the state space. Howewer, f
large systems, the reductions provided may stilheedequate to allow model checking to be per-
formed. The solution is to employ further reductiechniques in conjunction with the internal reduc-
tion methods. Techniques such as abstraction mivtystan effectively reduce the size and complexi-
ty of the modeprior to sending it to the model checker.

Abstraction and slicing both produce smalledats; abstraction by representing several variables
as a single abstract variable, and slicing by elating irrelevant portions of the model. The main
difference is that an abstract model is alway®ei over-approximation or an under-approximation
of the original model, so it is not batbundandcomplete whereas the model produced by slicing,
known as thslice is both soundndcomplete. Over-approximations can produce couxaenples
that are not valid traces of the original modelileshnder-approximations can fail to discover coun-
terexamples that exist in the original. In contragtroperty holds on the slice if and only ifatds on
the original model.

Another advantage is that slicing algorithnesamputationally inexpensive. There is therefore n
disadvantage in using slicing. If slicing is ala¢duce the model, it will reduce the burden ef th
model checker. In the worst case, the slice retlmiikbe the same size as the original model. ©ue
its low computational complexity, slicing can bedss a complementary method to the other ap-
proaches for reducing state explosion.

The aim of this thesis is to use slicing teghes to reduce specifications prior to model ctmegiki
order to alleviate the state explosion probleroyahg large systems to be verified. The specifirati
language that will be usedBghavior TreegDromey, 2003, 2005), a language with a formal sema
tics and a graphical, tree-like notation that Elgainderstood by industry practitioners. The Hssu
from this thesis are applicable for slicing of migda other specification languages as well.

Informal |:> Behavior |:> :> Slice
Requirements Tree
Temporal Logic e
Property |:> P g I:> checking
Formula

Result of model
checking

Figure 2. Model Checking Behavior Trees with Slicing

Figure 2 shows the proposed approach for wicigg to aid in the model checking of Behavior
Trees. The informal requirements must first bedia@ed into a Behavior Tree using the normal Be-
havior Engineering methodology. The property todxdfied must be expressed as a temporal logic
formula. Then, a slice is produced using the Badraliee and the temporal logic formula as inputs to

Thesis Objectives 3

the slicer. The slice and the temporal logic fomrate then given to the model checker, which then
either states that the property is proved or retaroounterexample.

Behavior Trees

Behavior Trees is the specification languaderigng to the Behavior Engineering methodology,
proposed by Dromey (2003). Behavior Engineeriramiapproach for producing a formal specifica-
tion out of informal, natural language requiremégtiehavior Engineering"). Behavior Engineering
advocates a simple approach for creating a Behd@wvew out of requirements. Each individual re-
quirement is modelled separately and the resudtthen merged together. This process assists users
with managing large sets of requirements. The figgllt is a formal model which maintains tracea-
bility to the original requirements. Behavior Erggming has the following benefits (Dromey, 2003,
2005):

= The incremental approach for requirements transiatnables users to handle the complexity
of large systems by reducing the burden on theirtsbrm memory.

= The approach effectively “bridges the gap betwegnirements and design” (Dromey, 2003,
2005), by providing a rigorous translation method.

= Behavior Trees maintain traceability to the origirguirements by annotating the model
with the identifiers of the requirements. Thisseful to ensure that later stages of the design
continue to preserve the original intentions ofréguirements.

= The graphical notation enables users with no madtieat or formal methods background to
create Behavior Trees with little difficulty. Thisevident by the recent interest in Behavior
Engineering by industry practitioners ("Represen@omplex Systems," 2008).

= The output is a formal model, because Behaviorslhewe a formal semantics (Colvin &
Hayes, 2011).

Behavior Trees can be automatically translatemlmodel checking languages for verification
(Grunske, et al., 2008). This process has beenausmassfully for verifying several case studies
(Grunske, et al., 2011). However, it inevitably mainescape the state explosion problem. For large
Behavior Tree specifications, the model checkerofakes too long or runs out of memory and is
unable to return a result. Zafar (2008) attemptedddel check a case study of a hospital informatio
system. He reported that after running for mora %0 hours, the model checker ran out of memory
without providing a result. He finally resorted&alucing the model using his own knowledge of the
system and was able to obtain a result. Howewveeshe reduction was performed manually and not
according to a defined approach, he had no guarttmethe results obtained using the reduced mod-
el applied to the original model. Examples sudh@slemonstrate the importance of a correct, auto-
mated approach for reducing Behavior Tree models.

1.1 Thesis Objectives

Since the Behavior Trees of most realistic syst@mdo0 large for the model checker to handle,
users will be unable to use the benefits of Beldsmineering for large systems. The primary goal
of this thesis is to fill this gap in the Behaviengineering methodology, by proposing the use of
program slicing techniques to automatically redBebavior Tree specifications, for reducing the
time and memory resources required by the modekehne

In addition to this, another objective of tthiesis is to provide new slicing methods that ppdia
cable for slicing of any programming or specifioatlanguage. This includes an optimisation tech-
nique for obtaining further reductions to the slide well as this, the thesis describes a method fo
creating slices that are capable of preservingiéxtoperator. Additionally, the thesis proposes a
novel form ofbranching bisimulatiomunder which the temporal logic CTls preserved, which in-
cludes thenextoperator. This is a useful theoretical result.

The thesis begins, @hapter 2, with an introduction to the concepts requirednderstand the
thesis topic: temporal logic, existing slicing madb, bisimulation and the syntax and semantics of
Behavior Trees.

4 Introduction

Program slicing technigues cannot be diregtptiad to Behavior Trees, due to the differences in
semantics and structure between programs and Retiaees. For this reason, a new approach for
slicing Behavior Trees has been developed anegepted in this thesis, @hapter 3. The slicing
approach utilises both adaptations of existingrglitechniques used in programs, as well as new
methods for handling constructs that are specifigehavior Trees. For this purpose, concepts nsed i
program slicing, such as tleentrol flow graph the graph that represents the control flow imca p
gram, must be adapted for Behavior Trees. A nem fafr control flow graph has been proposed,
which incorporates concepts suclaksrnative branchinga branching construct unique to Behavior
Trees. Slicing operates by identifying dependenoad&een the nodes of the model. The proposed
slicing approach utilises adaptations of dependépas normally used in program slicing, such as
control and data dependence, as well as new depentges for synchronisation, communication
using message passing and termination of threads.

Behavior Trees contain nodes which divert trdrol flow to other locations, known ssversions
andreferencesA technique for removing unnecessary nodes @ktlypes is presented. The tech-
nigue ensures that the resulting slice will stillgerve all necessary loops but will not contaimegn
essary ones. Furthermore, this thesis presenthai¢ee for merging the nodes of the slice into a
syntactically correct Behavior Tree.

Polynomial-time algorithms for producing theshave been developed, to ensure that the time fo
producing slices is kept to a minimum.

The slicing approach is only of use if theediproduce identical verification results to thgioal
models. To confirm that this is the case, a préobarectness is presented, which relates thetslice
the original model usingranching bisimulation with explicit divergeneeform of weak bisimulation
that is known to preserve properties specifiethénlogic CTL .

Chapter 4 presents an optimisation technique for reduciegribdel further, by removirigfeasi-
ble paths This technique is an improvement of an existimgraach used for slicing programs. The
approach given in this thesis can effectively posdsmaller slices than the previous approach. As
well as being useful for Behavior Trees, this opation technique is applicable to all forms ofsli
ing, including slicing of programs. A proof of ceatness using bisimulation is provided, to ensure
that the reductions do not change the verificabigicome.

All previous slicing approaches designed foifieation are unable to preserve properties contai
ing the temporal logic operat¥rin Chapter 5, a novel technique is proposed, which producesssli
that preserve full CTl, including formulas containing the operaXofThis result is shown by the
proposal of a new form of branching bisimulatiompwn asext-preserving branching bisimulation
A proof has been provided to show that next-présgtranching bisimulation preserves full CTL
This result is an essential contribution, as thakaferms of bisimulation are normally unable to
preserve properties containing theperator. Thus, these results are useful for ragplications.

To confirm that the theoretical results of pinevious chapters are applicable in practice ghlts
must be demonstrated on case studieShkpter 6, the Behavior Tree slicing approach is demon-
strated on two case studies: a mine pump and atalasformation system. Both are case studies
which originally could not be model checked inas@nable amount of time. As will be seen, slicing
was able to significantly reduce the model checkimg, thus allowing verification results to be
obtained for both case studies.

Finally,Chapter 7 concludes the thesis and provides directionsufioré research.

The techniques given in each of the chapterbeaomposed together in various ways, according
to the user’s preference. After obtaining a slsiegithe general Behavior Tree slicing approads, th
can be used directly for model checking. Alterreltivan optimised slice can be developed from it,
using the approach given for removing infeasiblagaor the slice can be transformed into one that
preserves theextoperator. Another option is to compose all theshniques to create an optimised
slice that preserves all formulas.

Related Work 5

1.2 Related Work

Program slicing was originally developed by Béei(1984) for aiding programmers in the debug-
ging and understanding of large systems. Therbdwsrecent interest in applying slicing techniques
for model reduction prior to verification.

This thesis presents the first approach foingiBehavior Tree models. Previous attempts acred
ing Behavior Tree models have involved manual ceangade according to the user’s knowledge of
the system (Zafar, 2008). In contrast, the apprgaan in this thesis is fully automatic and theesl
Is guaranteed to preserve the same set of prapadithe original.

The closest related work are approaches wihimspecifications written in other languages for
verification. Compared to slicing programs for dgfing and understanding, slicing models for
verification is a relatively new topic. Neverthedethere have been approaches proposed by several
groups for different specification languages. Mided Teitelbaum (2000) sliced Promela models,
which is the input language of the SPIN model ckedRowever, their approach was not guaranteed
to preserve global properties, as they felt thaperty preservation was not essential for obtaining
useful results. In a similar manner, Ganesh (1p88)osed a technique for slicing SAL models, the
input language of the SAL model checking framevan Thrane and Sorensen (2008) gave a tech-
nigue for slicing models for the UPPAAL model checlOf these, Ganesh did not use temporal logic
theorems for the slicing criterion, instead usimginput and output variables in the model. Neither
proved the correctness of their approach. Sabodrsajani (2010) sliced Rebeca models, which is
an actor-based specification language, althoughdtienot prove the correctness of the approach
either.

Bruckner and Wehrheim (2005b) sliced ObjeattZ/€rification and later extended the approach to
CSP-OZ (Bruckner & Wehrheim, 2005a), a languagedtmbines Communicating Sequential Pro-
cesses (CSP) and Object-Z. The approach was thedexl to CSP-OZ-DC, a combination of CSP,
Object-Z and Duration Calculus (Bruckner, 2007}hkeir approach, the criterion contains the nodes
that influence the events and states found inhberem, expressed in Duration Calculus. This was
one of the few approaches which included prooteotctness. Similarly, Bordini et al. (2009) dice
agent-based systems written in the AgentSpeak éyggand proved that their approach preserved
LTL x using stuttering equivalence.

Several other authors proposed slicing appesafth reducing state explosion but did not provide
full proofs of correctness. Odenbrett et al. (2q&@sented an approach for slicing AADL (Architec-
ture Analysis and Design Language) specificatior@rder to reduce them prior to translation into
Promela, the input language of the SPIN model arediey claimed that CTly properties were
preserved, but left the proof for future work. Sarly, Schaefer and Poetzcsh-Heffter (2008) sliced
specifications of adaptive systems as part of tARBlframework. They usembnsistent bisimulation
to show that the approach preserves a variant bf @it does not contain theorX operators, but
details of the proof were not provided. Finallyn\iaangenhove and Hoojewijs (2006) presented an
approach for slicing UML models for verificationhd@ approach was claimed to preserve kTL
properties, although again a full proof was noegiv

These are all approaches for slicing specifinatin order to alleviate the state explosion @b
The technique presented in this thesis is thevfingth slices Behavior Tree models for this purpose
Since each slicing approach involves dependenegtsjpecific to the particular language, none of the
other approaches can be directly applied to Behdvees. Furthermore, no other approach is able to
preserve properties containing theperator.

Introduction

BACKGROUND

This chapter provides the background matesrahiis thesis. Section 2.1 introduces model check-
ing, temporal logic and bisimulation. Section Z@lains the concepts of program slicing, as well as
existing approaches for slicing specifications famanodel reduction in the context of verification.
Section 2.3 introduces the Behavior Engineerindnosidlogy, including the Behavior Tree notation
and the process of translating Behavior Treestodel checking language.

2.1 Model Checking

Model checking is an automated verificatiorhteque, developed independently in the early
1980’s by both Clarke and Emerson (1982) and Quaeltl Sifakis (1982). The model checker takes
two inputs: a model representing the system tcebiéied and a property to be checked. The model
checker then systematically searches the state gjffabe model to determine whether or not the
property is satisfied. If the property is not d&id, the model checker returns a counterexample,
which is a behaviour of the system that violatesgioperty. The counterexample aids the user in
determining the reason why the property does niot tvothe model.

Each model checker has its own input languagsgdecifying the model, usually describing the
model as dransitionsystemThe model describes the behaviour of the systém.property to be
verified is a requirement which must hold on theleipfor example a safety requirement. It is uguall
specified as a temporal logic formula.

2.1.1 Transition Systems

Transitionsystemslescribe the behaviour of systems. The behavdaledcribed in terms of states
and transitions. Each system contains a set ofi@fmepositions. The states are differentiatedby t
atomic propositions which hold in each state. Thaditions allow the system to evolve from one
state to another. A transition system, otherwisewkn as aKripke Structure is a tupleT =
(S, AP, £ J, —), wheredS'is a set of stateg\P is a set of atomic propositiong, is a labelling
function which labels each state with the setarfréd propositions that hold in that statis a set of
initial states and— < S'x JSis the transition relation. From a particularstétere may be multiple
transitions emanating from it. In this case, thengition to execute next is chosen non-
deterministically from the set of available traimmsis. An example of a simple transition system is

shown in Figure 3.
TP

Figure 3. An Example Transition System

Apathin a transition system is a sequence of states s, Si, S, -.- >, where for every, s.; € 7,
wherei > 0,5 — s.;1. Each path is eithdinite orinfinite. A finite path is one which terminates at

8 Background

some state. An infinite path does not terminateath is said to benaximalif it is either infinite or it
ends at a state with no outgoing transitions. Tiiexf w starting at the statgis denoted byt[s;)
and the prefix oft ending atgs denoted byt(s].

The goal of model checking is to determine Wwaetor not the following holds, whefe =
(8 AP, £ J, —) is a transition system awglis a temporal logic theorem:

TE o,

which represents thélis, € J, S5 .

Another type of transition systems is knowteaelled transition system$hese are the action-
based counterparts of transition systemisib&lled transition system a tuple §, 7, A—), wheresS
is a set of stated/ is the set of initial stated,is a set of actions ard =& § x A X S is the transi-
tion relation. The notatios—2> s is used as a shorthand fay 4,5) €—.

de Nicola and Vaandrager (1995) propatmably-labelled transition systepwghich contain the
information of both transition systems and labetladisition systems. A doubly-labelled transition
system has both a labelling on states and a lapetln transitions and is defined as a tuple
(S, AP, J, £ A——), wheredS'is a set of statesiPis a set of atomic propositiongis the set of
initial states,2 S — 2*¥ is a labelling function which labels each statéhe set of atomic proposi-
tions that hold in that statd,is a set of actions and— S § x A X S is the transition relation.
Doubly-labelled transition systems are useful parc#fying systems that contain both state and event
based information and allow to translate from anthé other. For example, they were used in (ter
Beek, et al., 2011) for modelling the state andhebased aspects of UML state machines.

2.1.2 Temporal Logic

The most commonly used temporal logics are Coatipn Tree Logic (CTL) (Clarke and Emer-
son (1982) and Linear Temporal Logic (LTL) (Pnu&B77). Both are subsets of the logic CTL
(Clarke et al. 1986).

CTL is a logic which uses a branching time model. Bnémg time reflects the fact that many
different paths are possible starting from anywgistate in the transition system, due to stateisav
more than one outgoing transition. In CTproperties are expressed in termstafe formulasind
path formulas State formulas specify properties of states,avbéth formulas describe properties
which hold on paths. The following definition giviée syntax of CTLformulas. These definitions
have been taken from Baier and Katoen (2008).

DEFINITION 1. CTL* SYNTAX
A CTL stateformulay is defined as follows, whepes APis an atomic propositiogy, and, are
state formulas ang is apathformula:

Y =true|p [Y1 A o[-y |Eg

A CTL pathformulais defined as follows, wherg, andg, are path formulas anpis a state
formula:

Q=Y |P1 A Q2| = @1 |Xp1|@1U 2
| |

A state formula can be either the value, an atomic propositiomp], the conjunction of two state
formulas {1 A V,), the negation of a state formutay,) or the existence of a path satisfying a parti-
cular path formulagp). The operatok represents that “there exists” a path on whiclyihen path
formula holds. In addition, a derived operatds often used, which represents that the giveln pat
formula holds “for all” paths. The operatrs derived front as followsAp = - E— . In a similar
manner, the disjunction operator can be derivem fronjunctiony; vV {, = = (= 1 A = o).

Model Checking 9

A path formula can be either a state formiijathe conjunction of two path formulag:(A ¢,),
the negation of two path formulas ¢), thenextoperator X¢,) or theuntil operator ¢, U ¢,). The
nextoperator specifies that the given path formulatrhokl at the next state on the path. Thél
operator is used to specify that a given path féarmust hold until another given path formula hplds
l.e. @1 U @, specifies thadp, holds until a state is reached whexeholds. Additionally, there is a
requirement thap, does eventually hold. Two derived operatbes)dG, are often used. Tit®pera-
tor specifies that a given path formula must evadiytinold, at some state in the future along thb.pa
F is derived fronu as followsFe = true U ¢. TheG operator specifies properties which must hold on
all states along the pathis derived front as followsGe = — F(—¢). As was done for state formu-
las, the disjunction operator can be derived fromjunction.

The following definition gives the semantics @TL" formulas, which explains under what cir-
cumstances a state satisfies each type of formula.

DEFINITION 2. CTL* SEMANTICS
LetT= (S, AP, .£ J, —) be atransition system. A CTktate formula holds in a statee , denoted

T,skE 1, or simplys = v, according to the following, whetg andy, are CTL state formulas ang
is a CTL path formula:

Sk true,

skEacAPiff ae £(9),

SE - iff S Py,

SE {1 A}, iff sE P, ands =y,

Sk Eq iff there exists a path = <), 5, S, ... >, such thad, = sandm = ¢.

ACTL" path formulap holds for a pathr = <s,, 51, S, ... >, denoted = ¢, according to the follow-
ing, wherep; andeg, are CTL path formulas and is a CTL state formula:

mE P iff S E Py,

T @1 A @ Iff TE @ andm & @,

T = — @ Iff TH @,

= Xy iff T[S = @,

T & @1 U @ iff Jj >0 such that[s) = ¢, andVi, where 0< i <], n[S) & @1

[

CTL is a subset of CTlin which every path operatox, U, F andG) must be immediately pre-
ceded by one of the state operators E. Thus, some CTLproperties are not expressible in CTL,
such ag(Xp A XXq). LTL is a subset of CTlwhich does not include ttieoperator. All properties
are implicitly expressed over all paths. In LTLsitnot possible to specify thétereexistsa path
where a property holds. Even so, there are LTLegntaggs which cannot be expressed in CTL, such as
FGp, which models fairness. The relationship betvikerthree logics is shown in Figure 4. CkL
LTL 5 and CTLy refer to the variants of CTLLTL and CTL, respectively, that do not allow thee
of theX operator.

CTL*

y

Figure 4. Relationship Between CTL’, CTL and LTL

10 Background

2.2 Program Slicing

Slicing is an automated program reduction teghe which was originally proposed by Weiser
(1981, 1984) for aiding developers in debuggingamdkerstanding large programs. Since then, pro-
gram slicing has been investigated extensively Tge€1995) and Xu, et al. (2005) for comprehen-
sive surveys), exploring its use for debugging &s@éf originally intended, as well as for new appli
cations, including testing. The premise behind maogslicing is simple: the program is reduced by
automatically eliminating program statements thairaelevant according to some specified slicing
criterion, which traditionally consists of a progratatement and a set of variables. The goafirsto
the statements which are necessary in order tonlethe values of those variables at the given
point in the program.

Weiser's original approach (1981, 1984) invdlgelving dataflow equations in order to compute
the set of relevant statements that form the d\igest recent approaches instead uBeogram De-
pendence Grap{PDG), first proposed by Ottenstein and OttengtE®84), which is a graph repre-
senting the dependencies between the program statenThe slice is computed by performing a
backwards traversal of the graph, starting at thetf interest. Figure 5 gives an overview of the
usual slicing approach for programs. The first gep construct €ontrol Flow GraphCFG) of the
program, which is a graph showing the control flitween the statements of the program. This CFG
is then used to create the PDG. A slicing criteissupplied, commonly in the foror {s, v}, where
Sis a statement in the program and a set of variables of interest.

Next, the node in the PDG which representpthgram statement from the slicing criterion is
identified. This node is used as the starting pimina. backwards traversal of the PDG. The nodes
which are encountered during the traversal fornslice; all other nodes are discarded.

Slicing is computationally inexpensive. Eaclhgdof the slicing process can be achieved in poly-
nomial time (Reps, et al., 1994). Additionally, ttanstruction of the CFG and PDG need only be
performed once per program. The construction aa slice only requires a new traversal of the
existing PDG, starting from a different node basedhe new criterion.

Program :> Control-flow :> Program De-

Graph (CFG) pendence
Graph (PDG)

Criterion :>:> Slice

Figure 5. Overview of Program Slicing

2.2.1 Slicing of Sequential Programs

The first step of slicing is to create the CohElow Graph (CFG) of the program. A CFG is a
directed grapls = <N, E, start, end>, whereN s a set of nodes, each representing a statemitat i
programE is a set of edges representing the flow of conguath thaE =N x N, startis the node
representing the start of the program andis the termination node. An edge E, wheree =
(ng, ny), indicates than, is one of the nodes which can execute immediafédyn;. The node, is
known as ammmediate successof n;. Every node (except the end node) in the CFGilizey @ne
or two immediate successors. Sequential flow regulbne successor, while branching conditions,
such agf statements, result in two successors, one repirggéine case where the condition is true
and the other where it is false. For this reagunetiges of a CFG may additionally be associatibd wi
a label indicating whether it is threie or falsebranch. The functiolabel(e) returns the label associ-

Program Slicing 11

X=75;
if (x> 2) then
y=6;
else
y=7;
Z++,
outputy;

Noubh, wN -
e_l
e °'I'I

Figure 6. A Simple Program and its Corresponding CFG.

ated with the edge A pathin a CFG consists of a sequence of nodeg ki, ..., N« >, where for
everyn;, such that & i <k, (n, ni.y) € E. For every noda in the graph, there exists a path fretart
tonand a trace fromtoend The path from a nodato a noda is given bypath(m, n). An example
of a simple code fragment and the corresponding iSEBown in Figure 6. Each node in the graph
represents a statement of the program, as indibgtie numbers. Thistatement at line 2 results in
a branch in the graph. Both branches convergede o

The Program Dependence Graph (PDG) (Otter&®Bittenstein, 1984) is constructed by identify-
ing dependencies between program statements hgifitRG. The PDG is also a directed gréph
<N, E >, whereN is a set of nodes, each representing a statem#ém program ant is a set of
edges such th& = N x N. The difference is that the edges represent andepey between two
nodes, instead of showing control flow. Unlike @1€G, there are retartorendnodes in a PDG. An

edgeee E, wheree = (ny, n,), indicates that, is dependenbnn;. This means, requires, in order
to execute. The two main types of dependenciesdigrgms are control and data dependence.

Control Dependence

A control dependence from naaldo n, indicates that, controls whether or not will be execut-
ed. There are numerous forms of control dependertbe literature. Many of these are essentially
the same, despite having different names (Chengi R006). Control dependence definitions vary
according to concepts such as how non-terminasitrandled. The traditional form of control de-
pendence, as described by Tip (1995), is defingztims of the notion gfost-dominanceA noden is
said topost-dominate nodem iff every path frommto endpasses through Theimmediate post-
dominatorof mis the closest post-dominator. Using these cosgcephtrol dependence is defined as
follows.

DEFINITION 3. CONTROL DEPENDENCE
Noden is control-dependent on nodsff:

= Jr=pathim, n), wheré&Vpe w-{m, n}, pis post-dominated byand

12 Background

= mis not post-dominated by [

The first condition of the definition stateaththere is a path fromton on whichn always exe-
cutes. The second condition states that thereléast one other path fromon whichn is never
reached. The nodm therebycontrolswhether or noh can execute, by making the decision as to
whether or noh will be bypassed.

Other variations of this definition exist whiate essentially the same, for example the defimaf
strong control dependengiven by Podgurski and Clarke (1990), which stdiata noda is con-
trol-dependent on a nodeif there is a path froomto n which does not contain the immediate post-
dominator ofm.

Example.

Control dependence can be illustrated witlestample in Figure 6. Lehbe node 2 andbe node
6. On the path from 2 to 6, node 5 is post-domahbienode 6, since every path from node értd
passes through node 6. This satisfies the firaliion of Definition 3. Node 2 is not strictly pest
dominated by node 6, due to the other path throogdle 3, thereby satisfying the second condition.
Thus, node 6 is control-dependent on node 2.

The definition of strong control dependencedpaes the same result. Node 7 is the immediate
post-dominator of node 2. There is a path from ribttenode 6 which does not contain node 7, so
node 6 is strongly-control-dependent on node 2.

]
Data Dependence

Data dependencies exist when one node motlifigestate of a variable which is referenced by
another node. LEEF(n) return the set of variables which are updateubden, for example varia-
bles which are set to a new value. R&Hn) return the set of variables which are refererateshde
n. An example is when dhstatement consists of a guard which queries #te ef a variable. The
definition states that a nodes data-dependent on a nadd n references a variable that is defined
atm and there exists a path between them on whichathable is not re-defined.

DEFINITION 4. DATA DEPENDENCE
Noden is data-dependent on nogfeiff 3v such that:
= ve DERm),
= ve REHRN) and
= Jr =pathim, n), such thaWvp e m—-{m}, ve¢ DEF(p).

]
Example.
In the example in Figure 6, node 2 is data-déeet on node 1, because node 2 queries the Btate o
variablex, while node 1 updates the state of variablEhe PDG of the CFG in Figure 6 is given in
Figure 7. Every edge corresponds to a dependenaxde two of the nodes in the CFG.

]
Types of Slicing

The numerous slicing algorithms currently irstence can be classified in several different ways
Most slicing algorithms are eithstaticor dynamic For dynamic slicing (Korel & Laski, 1988), the
criterion includes the input values for the prograrnereas static slicing does not make any assump-
tions about the input values and thus considelialits. Therefore, dynamic slicing can produce
smaller slices than static slicing can. This now@s formalised by Binkley, et al. (2006), wheeyth
showed that dynamic slicing is a weaker form disticing. They further proved the correspond-
ence between weaker and stronger forms of sligidglae size of the slices produced. If a form of
slicing is shown to be weaker than another, thdlsstgossible slices obtainable by the weaker

Program Slicing 13

method (known as thinimalslices) will be smaller than the minimal slicestaf stronger method.
Thus, dynamic slicing produces smaller minimalsithan its static counterpart, as dynamic slicing
is weaker. Despite this, for a particular inpug #tice produced by dynamic slicing will not always
necessarily be smaller than what would have betinsa using static slicing. The results can vary
depending on the particular algorithm being usddiBy, et al., 2006). Another form of slicing,
known asconditionedslicing, lies between static and dynamic slicing. It feran of static slicing
which restricts the slice to statements which caatete under a specific condition.

—> Data Dependence
- —=> Control Dependence
\
\
/ \
‘ \

z’// @
d

Figure 7. The PDG of the CFG in Figure 6.

Another classification is whether the slicisgconducted in thiorward or backwarddirection.
Forward slicing identifies all the statements wlgeln be influenced ipe given slicing criterion.
Backward slicing identifies the statements whiah influencehe slicing criterion. Weiser’s original
algorithm is an example of static backward slicing.

2.2.2 Non-termination

Programs often contain loops which may potépgxecute infinitely, thereby preventing control
flow from reaching any successors beyond the ldbp.execution of a subsequent statemeasat
controlled by the guard of the loap, The traditional definition of control dependerggon-termin-
ation insensitive, since the guandnay be post-dominated hyThat is, every path fromeventual-
ly leads tan, even though it passes through the loop. The Ipibgsthat the loop may execute infi-
nitely is not taken into account. As a result,nité loops such as this will not be identified hg t
control dependence relation and will thereforeb@oincluded in the slice. The resultant slice would
exhibit different behaviour to the original progrdrmecause the trace in which the loop executes infi
nitely often will not be present in the slice.

Podgurski and Clarke (199ffinedweak control dependenda order to incorporate then notion
of non-termination. They used another form of glsnrinance, known agrong post-dominance
Recall that a nodepost-dominates a nodeff every path frommto the end node must pass through

n. A noden strongly post-dominates nodamiff there exists an integér> 1, such that every path
from m of length at least must pass through The difference between the two forms of control
dependence is only apparent in the presence aftatginfinite loops. Weak control dependence is
non-termination sensitive. It therefore resulta greater number of control dependencies identified
when computing the transitive closure of the CF@a®/control dependence is defined as follows.

" Podgurski and Clarke referred to post-dominandeséong post-dominance fasward dominancendstrong forward
dominancerespectively.

14 Background

DEFINITION 5. PODGURSKI & CLARKE’'S WEAK CONTROL DEPENDENCE!
Noden isweakly-control-dependent nodan, iff mhas two successqusindg, such thah strongly

post-dominatep but does not strongly post-dominate [

Chen and Rl (2006) proposed a new form of control dependeriiceh they calledermination
sensitive control dependendis designed to handle non-terminating loopsitilising termination
information about each loop, given as annotatigrthi® user. This form of control dependence lies
between strong and weak control dependence, caigardth the strong form when all loops are
annotated as terminating and with the weak formnwdiEloops are labelled non-terminating.

All of the definitions above require the comfitow graph to have a single end state, a concept
known as thainique end node properfiranganath, et al., 2007). However, this is uabiet for
many modern programs, which often have multiplepaints or no end points at all. This is often the
case for reactive systems which infinitely cycléheey wait to receive input. One proposed soluson
to modify the program in such a way as to ensuatitthas a unique end node. Nevertheless, this
solution is impractical for many modern progranustures. Ranganath et al. (2007) defined new
forms of both weak and strong control dependendehndre suitable for systems with no unique end
node. They defined control dependence avaximalpaths instead of paths which terminate at the
end node. Similarly to maximal paths of transisgatems, a maximal path of a control flow graph is
a path that either terminates or contains an iefilmiop. The definition for Ranganath et al.’s non-
termination sensitive control dependence is givaelov.

DEFINITION 6. NON-TERMINATION SENSITIVE CONTROL DEPENDENCE
A noden isnon-terminatiorsensitive control dependemm a nodeniff mhas at least two successors
p andq such that:

= for all maximal paths; fromp, noden always occurs and either=n or n strictly precedes

any occurrence ohin ; and
= there exists a maximal pathfromqg on which eithen does not occur anstrictly precedes

any occurrence af in .]

This new form of control dependence captures#ime idea behind the traditional form of control
dependence: a nodecontrols a node if mleads to two branches, one which leads &md one
which causes to be bypassed. The extra conditions in this nefinition are for handling paths
which do not necessarily terminate at a given exttbnbut instead revert and reachgain.

There are further variations on control dependesuch aseak-order dependengeroposed by
Amtoft (2008), which identifies nodes that contitwd order in which nodes are executed, not just
whether or not they are executed.

2.2.3 Slicing Concurrent Programs

The original slicing algorithms were designeddequential programs. Concurrency presents sig-
nificant challenges due to the complex interactioetsveen threads. Cheng (1993) was the first to
consider slicing of programs with concurrently exetg threads. Cheng used Program Dependence
Nets, which is an extension of Program Dependemnapt@. Cheng identified dependency types that
are associated only with concurrent proces&eso (1999) proposed a similar approach, also based
on PDG's, using multi-threaded dependence graphslitong concurrent Java programs. As for
Cheng'’s approach, Zhao's graphs represented atlitigoes of dependencies, which arise doe
the interactions between concurrently executinggttts. Zhao focussed on communication depend-
ence and synchronisation dependence.

The techniques of Cheng and Zhao were botldlmsa graph reachability problem and therefore
assumed transitivity for all dependence edgesigtaph. This assumption is correct for control and

TPodgurski and Clarke used the tefinect weak control dependeriostead of weakontroldependence and used the term
weak control dependente refer to the transitive closure of direct weaktrol dependence.

Program Slicing 15

data dependence, as these operate on sequetimllgatvever, data dependence between parallel
threads is intransitive, so this assumption cath ieanaccurate slices (Krinke, 1998).

Krinke differentiated between data dependembih occurs between nodes in a single thread, and
interference dependenaghich occurs between nodes in parallel threadgrdposed a solution to
handle the intransitivity of interference dependebased on the notion ottreaded witnesin a
threaded version of the CFG. A threaded witneasesguence of statements which form a possible
execution path of the program. Statements arenchtded in a slice if they do not form a threaded
witness of the program.

Krinke’s algorithm for computing threaded wisses makes use of a tuple which records the last
visited node for each thread. When a new nodechel in the backwards exploration of the depend-
ency graph, the algorithm checks whether therev@id path from the new node to the last visited
node in that thread. If not, the new node is ndtitked in the slice because it does not form atiee
witness. If there is a path, the new node is rezmbmd the tuple as the last encountered node &br th
thread.

Nanda and Ramesh (2000, 2006) showed the #gotd be imprecise in the case of nested
threads. Consider the example CFG shown in Figufé®& CFG shown is a threaded CFG in the
style used by both Krinke (1998) and Nanda and Rarg2000, 2006). It begins with an initial thread
B0, which then spawns two new thre@dsindd,. After executing some behaviour, these two threads
exit and the control flow converges baclegoThread®; andd, are known as nested threads. Since
each thread is considered separately when comghgrtreaded witness, the algorithm maintains a
tuple containing the last visited node for eacthefthree threads. Assume that the algorithm Isas ju
explored a node, in 8,. The tuple would now baf, L, 1], where L represents that no node has
been encountered for that thread so fam, ¥as interference-dependent on a nada 6, then this
node will be included in the slice, because no adeso far been visited in that thread. This is im
precise because can never depend opwhich executes after it. The solution proposedlagda
and Ramesh (2000, 2006) is to store informatiothemast node traversed in each set of sequegntiall
operating threads, instead of in each individuadat. When a node is encountered, its label is not
only recorded as the last node traversed in itstbvaad, but also in its parent and child threbds.
the examplen; would be recorded in the place for thr@gdas well as fob,, i.e. the tuple would be
[ny, L, ng]. Then whem, is explored, it will not be included in the slivecaus@; cannot be reached
from n,.

Nanda and Ramesh (2006) also showed Krinkg@aph to be imprecise when handling threads
in nested loops. Assume there is a ngaeith an ancestox,. Further assume thatis dependent on
another node,. There are cases in whighcannot influence, because its update is always overid-
den by the ancestaoy. In these cases, includingwould decrease the precision of the slice.

START 8

Cobeqgin

START & START &

! v
‘ EXIT 8, ‘ ‘ EXIT 6 |

Coend

EXIT &

Figure 8. Example CFG of a Java Program, using the Threaded CFG style of
Krinke (1998) and Nanda and Ramesh (2000, 2006).

16 Background

Further reductions were suggested by Rangandthiatcliff (2004), wh@roposed a technique to
identify interference edges which can be removat@scorrespond to objects which are only ever
accessed by a single thread. Since interferenandepce occurs when an object is written in one
thread and read by another, objects which areamdgssed by a single thread cannot generate inter-
ference dependencies. This allows the number effaxence dependence edges in the PDG to be
reduced.

2.2.4 Program Slicing vs. Slicing of Models

Program slicing has been investigated extelysilre comparison, slicing of specifications has
received less attention. The earliest attempiciglspecifications was that of Oda and Araki 399
for slicing Z specifications. Their purpose wagtprove the understanding of large specifications.
Wu and Yi (2004) later proposed another approachliting Z specifications using PDG’s. Other
similar approaches include slicing of UML modelarfb & Kolahdouz-Rahimi, 2010), CSP (Silva, et
al., 2008), use case maps (Hassine, et al., 20@B3rchical state machines expressed in the RSML
language (Heimdahl & Whalen, 1997), Extended FiStigte Machines (Korel, et al., 2003) and
statecharts (Luangsodsai & Fox, 2010).

The traditional program slicing techniques banadapted to suit various languages, including
specification and modelling languages. The exadlifications that are required depends on the
language of interest. It is usually necessary ticter the underlying semantics of the language to
determine the types of dependencies. In some thsekfinitions of control and data dependence for
programs can be easily adapted to the modellingukege. For example, when slicing Extended
Finite State Machine (EFSM) models, Korel et aD0@) defined control and data dependencies in
terms of states and transitions in the model, awstd# nodes in the control flow graph. Similarly,
Labbé and Gallois (2008) proposed an approachidargscommunicating automata specifications by
adapting the control dependence definition of Raatfaet al. (2007). Again, they defined control
dependence in terms of transitions in the spetibicainstead of nodes in the control flow graph.
Furthermore, they incorporated Krinke’s threademess approach (1998) into their definition for
data dependence, by including the condition tlettimust be a valid path in the specification corre
sponding to each dependency path.

The modelling languages may contain constmibcish do not match programming language con-
cepts. In these cases, new dependence definitiapbemnecessary. Labbé et al. (2007) defined a new
type of dependence known esmmunication dependende order to handle the communication
which may occur between two automata. iftterference control dependenetLuangsodsai and
Fox (2010), used for slicing statecharts, alsoquer$ a similar purpose. Interference control
dependence occurs when an event in a stateclrdgpisred by a parallel action. Wu and Yi (2004)
introduced a new type of control dependence knaswwogic dependencen order to represent the
dependencies between post-conditions and pre-tamslin Z schemas. Briickné2007) defined
several new types of dependencies for slicing CZABC specifications, includingming depend-
ence the dependence arising from real-time propespesified in the DC part of the specification. In
some cases, traditional dependencies may be faubd unnecessary. For example, interference
dependency was found to be unnecessary when sRelhgca models (2010), as there are no shared
variables between parallel objects. As these exasrghlow, the definitions and algorithms for pro-
gram slicing can be adapted to other types of laggs. Each language would require different varia-
tions on the traditional program slicing definitiomccording to the semantics of the language.

The purpose of performing the slicing is aldevant to how the dependencies should be defined.
When slicing is used for debugging or understandimg slice does not need todrecutableAn
executable slice is one which has the proper syftdre programming language and so can be exe-
cuted. When slicing for verification, the slice mbe executable, in order for it to be used by the
model checker. Another factor which is of more imt@nce for slicing for verification is non-
termination. As discussed by Ranganath et al. (Rffe goal is only to aid the user in underdtan
ing large specifications, not for formal verifigati then it might not be important to ensure tlogkn
termination will be preserved.

Program Slicing 17

Slicing Criterion

Slicing for reduction of models or program®pto verification has been classifiedRasposition-
Based Slicingpy Silva (2011). The main difference that ariséemvslicing for verification is the
slicing criterion. When slicing for debugging ordamstanding, the criterion is usually given in the
form of a program statement of interest and afseriables. On the other hand, slicing used in the
context of verification uses a criterion basedhrantemporal logic formula to be verified. This must
be converted into the set of nodes from whichrdaestsal of the dependence graph must begin. The
approach can thus be classifiegiasultaneous static slicin@anicic, et al., 1995), because there are
several starting nodes for the slicing process.mb& comprehensive work on slicing programs for
verification is that of the Indus slicer (Dwyer aét 2006), which slices Java programs and opesate
part of the Bandera model checking framework. Tiberancorporates concepts such as termination
sensitive control dependence and interference depee.

There has been recent interest in slicing nsodetl specifications for verification. Several ap-
proaches have been proposed for various diffeaaguiages, as discussed in Section 1.2. All of the
existing approaches for slicing for verificatiorewessentially the same process for deriving the sta
ing nodes from the temporal logic theorem. Fing d@tomic propositions in the formula are iderdifie
Then, any nodes which directly modify the truthueadbf one or more of these propositions become
the slicing criterion. For example, Van Langenhard Hoogewijs (2006), when slicing for verifica-
tion of UML diagrams, considered the slicing citerto be any states or transitions in the UML
model which directly modify a variable in the termgidogic theorem.

This approach is the simplest and least cortipntly expensive, but it can sometimes lead to
unnecessary hodes being included into the sliceuevan et al. (2005) proposed a method for fur-
ther reducing the slice if the property conformseadain specific formats, such as LTL formulas in
the formatG(p = FQ). The slices were reduced by removing areas dlibe in which the property
holds vacuously due to the antecedent of the famuhluating tdalse

Slicing Precision and Correctness

The most desirable slice would be the smatiessible slice: one which contains exactly alhef t
statements which influence the criterion and noandhis is known as th@ptimalslice. However,
Weiser (1984) showed this to be undecidable, bedhesoutcome of conditions, such as the guards
of if statements, is undecidable in general. Miller-&hah Seidl (2001) further showed that finding
the optimal slice for multi-threaded programs witheynchronisation or procedure calls is PSPACE-
hard and for multi-threaded programs without syoolsation or loops it is NP-hard. They concluded
that there can be no efficient optimal slicing aidjon for concurrent programs.

Since the optimal slice is unattainable, tha goslicing is to obtain a slice which is@®ciseas
possible while still maintaining correctness. P3exi refers to the size of the slice. The fewdesta
ments in the slice, the more precise it is. Newdess, precision cannot be achieved at the price of
correctness. It is essential that the slice isecbriA correctslice is one which contains all of the
statements which are relevant to the criterionin&orrect slice is one which is missing some neces-
sary statements and will therefore exhibit behawvidhich is different than the original program. 3hi
requirement is especially important when slicirggplied for model checking, because the slice must
satisfy the same properties as the original ma@dslice which is correct but also contains unneces-
sary statements is referred to amaservativeslice. The largest conservative slice is the emiip-
gram itself.

An important consideration when creating argj@lgorithm is therefore to ensure that the slice
produced are correct. Correctness can be definsehvigral ways. Weiser (1984) used a notion of
projection to define correctness. A slice must litta projection of the behaviour of the original
program, with respect to the variables and the raragstatement given in the slicing criterion.
Weiser’s definition restricts slicing to programghaterminating behaviour.

Podgurski and Clarke (199f9fined correctness using what they refer geasantic dependence
Semantic dependence occurs between two staterhartBange in the semantics of one statement
can affect the execution of the other. The obsinvalf Weiser (1984) shows that identifying alllsuc
semantic dependencies is undecidable in generaletry, Podgurski and Clarke demonstrated a

18 Background

useful relation between semantic dependencesgnidictic dependenc8yntactic dependence is
simply the transitive closure of control and dataehdenciesStrong syntactic dependenoecurs
between two statements if the statements are lim&aditively by strong control dependence or data
dependence, whereagak syntactic dependenoecurs if the statements are linked transitivety b
weak control dependence or data dependence. PatgndsClarke showed that semantic depend-
ence implies weak syntactic dependence but natgsgntactic dependence. In other words, the
possible non-termination of loops can result ie@antic dependence between two statements and
must therefore be taken into consideration wheingjj in order to produce slices which are correct.

The notion of correctness is sensitive to tpase of the slicing algorithm and the semantics o
the language under consideration. For exampleguadtin Podgurski and Clarke’s semantic depend-
ence was sufficient for their purposes, Kumar anoiitz (2002) found this definition to be insuffi-
cient for handling programs with unstructured colrflow, such ago-toor jump statements. They
provided an extension of semantic dependence vittides such jump statements.

When slicing is used for reduction of models/erification, the notion of correctness is retktie
the preservation of properties. It is essentid ltia¢h the slice and the original model preseree th
same set of properties, thereby guaranteeing tetfecation result obtained using the slice is th
same as what would have been obtained if the atignodel had been used. The correctness of the
Indus slicer, which slices Java programs, was shasimg a notion of projection (Hatcliff, et al.,
1999; Hatcliff, et al., 2000), similar to Weisepgmojection to demonstrate that their approach pre-
serves LTLy properties. The difference between Weiser’s ptmjea@nd the projection of Hatcliff et
al. is due to the slicing criterions. Weiser udadrgy criterions that included both a programestat
ment and a set of variables of interest. Whemnglitor verification, the criterion normally onlyo
sists of a set of nodes without any specific vdesbf interest. Thus, in the definition of projent
given by Hatcliff et al., the variables of interestrespond to the ones referenced by the nodles in
criterion. This approach has also been used by atlibors for discussing the correctness of slicing

Similarly, Rakow (2008) developed an approacislicing Petri Nets which is guaranteed to pre-
serve LTLy properties. Wasserrab et al. (20p8)vided a general framework for proving the cor-
rectness of slicing. They used the theorem preatrdille to verify their proof. The framework allows
any backwards static intraprocedural slicing athanito be easily proved by simply showing that the
CFG and the control dependence relation satistaioeproperties. They used a weak simulation
relation to show the correctness of slicing. Howgsiace their purpose was not verification, thiey d
not relate the weak simulation relation to any faitiemporal logic. The approach by Bruckner
(2007) for slicing CSP-OZ-DC, was shown to preserve prigeespecified in Duration Calculus.
Ranganath et al. (2007) showed the correctnebgioilicing approach by relating the original pro-
gram and the slice using a weak bisimulation @atiVeak bisimulation is especially suited for
slicing as it allows for the presence of invisiseps. The nodes in the slicing criterion can Ipside
ered to be thebservablesteps, while all others astuttering corresponding to the invisible steps in
the weak bisimulation. In the next section, theoegts of bisimulation will be introduced.

2.2.5 Bisimulation

Bisimulation is a commonly used technique f@mving equivalence between two transition sys-
tems. It can be divided into ts&rongandweakforms. Strong bisimulation requires that everpste
that is made in one transition system is matcheaidigp in the other system, as given by the fellow
ing definition. In this section, all the definitismvill be given in terms of doubly-labelled traisit
systems, as these will be used as in the nextahapepresent the underlying framework of Behav-
ior Trees.

DEFINITION 7. BISIMULATION
Let Ty, T, be doubly-labelled transition systems suchthat(s$;, AR, 4, £, A, —), forie {1,2}.

A relation Zis a bisimulation iff for everg £ t, wherese $; andt € >, the following holds:

Program Slicing 19

la)Vs e S;andae A, such thas—a> s, dt'e T, such that _a, t'ands £t and
1b) Vt' € S, anda e A, such that _a t', 3se T; such thas —2> s ands 2t

T, andT, are bisimilar, denote®, = T, iff there exist®& bisimulation#, such thag, 2 t,for all €
Jyandty € 4.
[]

On the other hand, the weak forms of bisimarasillow for the presence of invisihlsteps, which
do not have to be matched by the other systeme Siiming removes transitions from the transition
system, the resulting paths would contain fewgrsstiean the equivalent paths in the original. $tron
bisimulation is therefore unsuitable for establighihe equivalence between a model and its slice.
The stuttering transitions, which do not form pdithe slicing criterion, can be thought of assiivie
or silent steps which the slice is not requiredrtwlate. Using this approach, the weak forms of bi-
simulation are appropriate for establishing eqeineé for slicing.

Two common forms areeak bisimulation (Bloom, 1995) andranchingbisimulation (van
Glabbeek & Weijland, 1996). These forms of bisintiolaare defined over labelled transition sys-
tems. Weak bisimulation, as defined in (Bloom, 1994 direct modification of strong bisimulation.
Instead of requiring each step in one system todiehed by another, it requires that each observabl
step in one system be matched by an observablangtepother system, preceded by any number of
invisible z steps. This definition would appear to be an é&ffeanethod for applying bisimulation
concepts to systems with stuttering steps. Howdivere are cases where it is not suitable, as weak
bisimulation cannot distinguish between two systefiish perform identical steps but have different
branching structures. In order to differentiatensetn two systems such as this, van Glabbeek and
Weijland (1996) proposed an equivalence knowbrasching bisimulationBranching bisimulation
Is similar to weak bisimulation, except that itffdentiates between two systems that have different
branching behaviour. Branching bisimulation is dedi in the following definition, wheie----> s
denotes a stuttering step and-~~ s denotes zero or more stuttering steps.

DEFINITION 8. BRANCHING BISIMULATION
Let Ty, T, be doubly-labelled transition systems suchthat(s;, AP, 4, .4, A, —), forie {1,2}.
A relation 2is a branching bisimulation iff for eveg/# t, wherese $; andt € S, the following
holds:

la)Vs e S;andae A, such thats—a> s', eithers - s ands £ tor

It t" e Ssuchthat — ' —3>t, s#2t"and s 2t and

1b) Vt' € 8, andae A, such that—a> t', eithert ----> t' andt’' £ sor

39,8 € Ssuchthas > & —a>s’, S' Ztands £ t.

T, andT, are branching-bisimulation equivalent iff therestsa branching bisimulatios, such that
S 2 t{hforal e Jandty e .
]

As with weak bisimulation, branching bisimulati@guires every observable step in one system
to be matched in the other system by a sequerzsg@br more stuttering steps followed by a match-
ing observable step. The difference is that trextinédiate stat®, that is reached after the stuttering
steps, has to be related to the first state imtiginal models.

De Nicola and Vaandrager (1995) showed th&aalbetween branching bisimulation and its state-
based counterpagtuttering bisimulationdefined over Kripke structures. Stuttering bidation is

20 Background

known to preserve CTly properties. De Nicola and Vaandrager used dowttlghed transition
systems to develop a conversion function to trémbletween labelled transition systems and Kripke
structures. Using this, they established the etprica between branching bisimulation aner-
gence-blind stuttering bisimulatioDivergenceaefers to infinite stuttering paths. These areigd
by divergence-blind stuttering bisimulation, whitlerefore preserves only a variant of C¥Ide-
fined over finite paths only. As branching bisintida is equivalent to divergence-blind stuttering
bisimulation, it also only preserves CTLover finite paths. Since the usual definition giL.Cis
defined over maximal paths, it is necessary torerthat infinite stuttering paths are presenziel.
vergence-sensitive stuttering bisimulatipreserves CTly over maximal paths. De Nicola and
Vaandrager showed ttdivvergence-sensitive branching bisimulatiavariant of branching bisimula-
tion, is equivalent to divergence-sensitive stirttebisimulation and therefore preserves Clover
maximal paths.

For their definition of divergence-sensitivaiching bisimulation, De Nicola and Vaandrager did
not directly incorporate the notion of divergentte the definition. Instead, they created an estate
in the transition system to represent divergenddiaked all divergent states to that new statevHo
ever, as noted by van Glabbeek et al (2009), ukisgnethod|ivelockedstates cannot be distin-
guished frondeadlockedtates. Livelocked states are ones which havéosgi$, while deadlocked
states are ones which have no outgoing transiti@msGlabbeek and Weijland (199&pposed a
new version, calletiranching bisimulation with explicit divergenaeghich incorporates the diver-
gence requirement into the definition itself, imst®f making modifications to the transition system
The definition for branching bisimulation with eiqil divergence is given in Definition 9, takenrino
van Glabbeek et al. (2009a). Branching bisimulatiih explicit divergence was shown to preserve
CTL x by van Glabbeek et al. (2009b). This result hasbre-stated as Theorem 1 below. They
further showed that their definition is equivalenbther forms of divergence present in the liteeat
(van Glabbeek, et al., 2009a).

DEFINITION 9. BRANCHING BISIMULATION WITH EXPLICIT DIVERGENCE
LetT,, T, be labelled transition systems such that (S, AR, J, £, A, —), fori e {1,2}.
Arelation£ is a branching bisimulation with explicit divergexikt for everys 2 t, wherese $; and
t e S, the following holds:

la)Vs e S;andae A, such thats—a> s', eithers - s ands £ tor

It,t" e Ssuchthat — t° —3>t, s2t’and s 2t

1b) Vt' € 81 andae Ay, such that —3 t', eithert -~ t' andt’ £ sor

39,9’ € Ssuchthas > & —a>s’, S' Ztands £ t,

2a) if there is an infinite path---» 5 > s > ...,suchthag £ t, Vi > 0, then there exists
an infinite pattt > to > t; > ..., such thaf 2 s, Vi,j = 0, and

2b) if there is an infinite path----~ t; ---> t; --->...,such that; £ s Vi > 0, then there exists
an infinite patts -~ s > s > ..., such thag 2 t, Vi, > 0,

T, andT, are branching-bisimulation with explicit divergeremuivalent, denote®, 2 T,, iff there
existsa branching bisimulatio®, such that, £ t, for all § € /4 andty e 4.

Behavior Trees 21

THEOREM 1. BRANCHING BISIMULATION WITH EXPLICIT DIVERGENCE PRESERVES CTL".x

For two transition systen® andT,, T, 2T, = (T, =@ < T, = ¢, for allp € CTL).

Proof.
This result was proven by van Glabbeek et al. (BD09 O

2.3 Behavior Trees

Formal methods are essential for building atraed safe systems. Despite this, there is often a
large gap between the informal requirements praMxyethe user and the formal specification of the
system. The BehavibEngineering process aims to close this gap (Dro&@§3, 2005), by provid-
ing a rigorous translation scheme from the inforteatual requirements to the formal model, and
maintaining strong links between them. The Behdawineering process, created by Dromey (2003,
2005), consists of three types of models: Behauiees, Composition Trees and Structure Trees. As
their names suggest, Behavior Trees model the tmhradf a system, Composition Trees define the
composition, such as which components belong teysem, and Structure Trees model the struc-
ture, i.e. how the components fit together. In thesis, only Behavior Trees will be considered, as
this is the type of model which is used as thetiffrumodel checking. Behavior Trees have a formal
semantics (Colvin & Hayes, 2011). The Behavior Begring process is illustrated in Figure 9. The
process begins with a set of informal textual rezraents. Each requirement is first translatedanto
individual Requirement Behavior Tree (RBT). NeXtphthe RBT’s are merged together to create an
Integrated Behavior Tree (IBT). The IBT is themsformed into a Design Behavior Tree (DBT), by
making design decisions. This DBT can then beieekiby automatic translation into a model check-
ing language (Grunske, et al., 2008), simulated(Weal., 2007) or used in a model-driven engineer
ing framework to produce an implementation (My&0).

Requirements
Translation

Integration
Requirement Behavior %
Informal Trees

Requirements

Translation into
Model checking
Model Languages

Checker

Integrated Behavior Tree

Simulation <:| y
Design
Implementation ? Design Behavior Tree

Figure 9. Behavior Engineering Process

*The names Behavior Engineering and Behavior Thaes been trademarked using the American spelidgapitals for
each word. When not referring to these proper nahesBritish spelling dbehavioumwill be used.

22 Background

2.3.1 Behavior Tree Notation

Behavior Trees are graphical models in a tkefdrm. Nodes are represented as rectangulasboxe
which contain information on the behaviour that taé®n place, as well as an identifier linkingpit t
the original textual requirement that it came frananches are used to model either alternative
choices or parallel threads. Contrary to its ndmeever, Behavior Trees are not actual trees, but
instead are directed cyclic grapfifis is due to the presencerefersionandreferencenodes at the
leaf nodes of threads, which transfer the conliwal fo another location in the tree. The full syé
Behavior Trees is given the Behavior Tree Notation Document v.1.0 ("BehaVi@e Group, Be-
havior Tree Notation v1.0," 2007 this thesis, only the subset of the syntaxithased for transla-
tion into the model checking languages will be a&®d. For example, relational behaviour will not
be covered as it is not currently included in tiamslation process. The treatment of the excluded
language features remains as future work.

A Behavior Tree consists of nodes and edges.pHints of a node are shown in Figure 10. The
components the name of the component or attribute whigteiforming some behaviour. The name
of thebehaviouris given below it. The nodgpeis indicated by the symbols on either side of the
behaviour name. Some nodes may additionally h&eg The box on the left is threquirements
tag, which is an identifier linking the node back be toriginal textual requirements of the system.

Flag
A4
R1 Door
b
Open Component
[,Openg]
Requirements Tag \ Behaviour
Type

Figure 10. A Behavior Tree Node

Figure 11 shows the possible node types:

(a) State-realisationThe componert is updated to the staie

(b) SelectionControl flow passes through this node if the congoC is currently in
the state. If not, the thread terminates.

(c) Guard: Control flow passes through this node if the congoC is currently in the
state s. Unlike selectionsdis not in stats, the control flow waits at this location
until the condition becomes true. Note that inrée of this thesis, the guard will be
referred to aBTguard in order to avoid confusion with other notionggofrds.

(d) Internal Input EventThe componert receives a messagefrom another compo-
nent in the same Behavior Tree. There must beaat tine internal output event
node in the Behavior Tree sending the message

(e) Internal Output EventThe componertt sends a messageto another component
in the same Behavior Tree. There must be at legsinbernal input event node in
the Behavior Tree receiving the message

() External Input EventThe componert receives a messagefrom the external en-
vironment.

(g) External Output EveniThe component sends a messageto the external envi-
ronment.

8 Theflag was referred to as tloperatorin the Behavior Tree Notation Document v. 1.0 ("“Beébr Tree Group, Behavior
Tree Notation v1.0," 2007), but was known asfkagin previous work.

Behavior Trees 23

C C C
[c] 7¢7 27 ¢ 2?7
(a) (b) ()
C C
>m< <m?>
(d) (e)
C C
>>m << <<m>>

(f) ()
Figure 11. Behavior Tree Node Types

Additionally, nodes may refer édtributesof components, by replacing the behaviour namie wit
an expression involving an attribute. For exanipkestate realisation node has a component name of
C and a behaviour oA :=b, it represents that the attributef componen€ has realised stake In
addition to realisation of states, attributes caassigned to numerical values using attributessxpr
sions, such a& := A + 1. Selection and guard nodes can have any boolgaassion involving an
attribute, such a& > 5 orA =b.

Nodes which involve a conditional test, i.ede® of type selections, BTguards, internal input
events and external input events, will be refetoeid this thesis asonditionalnodes.

The nodes are joined together using arrowsgsepting the control flow. Sequential flow is mod-
elled using a normal arrow, as depicted in Figaréa], while atomic connections are modelled using
a straight line, as shown in Figure 12 (b). Atonides represent uninterruptible sections of behav-
iour; i.e. no node in another thread can intertiptatomic block.

A A
[a] [a]
B B
[b] [b]
(a) Sequential flow (b) Atomic flow
A A
[a] [a]
B C B C
[b] [c] [b] [c]
(c) Concurrent Branching (d) Alternative Branching

Figure 12. Sequential and Atomic Control Flow

24 Background

There are two forms of branching in Behavioe€k: concurrent and alternative. Concurrent
branching, as shown in Figure 12 (c) representdlphthreads. In the example, after the nafié
executes, the two nodefh] andC(c] and their sub-trees execute in parallel, i.eningossible inter-
leaving order. Alternative branching, shown in Fegli2 (d), represents a choice between two possi-
bilities in a single thread. In the example, eithernode[b] or the nod€[c] will be selected. When
one branch is chosen, the other immediately tetegnas for concurrent branching, the nodes may
be of any type. However, there is one restrictmmalternative branching: either all the branches
begin with a selection node or none of them.

Behavior Trees are designed to be able to mofttate behaviour. This is accomplished by the us
of reversionandreferencenodes, which cause the control flow to jump tatheolocation in the tree.
These two types of nodes are shown in Figure 1&@b), respectively. Reversion nodes are mod-
elled using the “*” symbol and reference nodesvardelled using the “=>" symbol. Both reversion
and reference nodes must be leaf nodes. Reversaoise the control flow to revert to a location
higher up in the tree. The new location is refetoeak theargetof the reversion. The target must be
an ancestor of the reversion node. Reference rmodasmilar, however they cause the control flow to
jump to another location which is not necessarilpacestor. The target of a reference node must be
in the same thread, but may be in an alternatiaadbr. Reversion and reference nodes can be any
type of node. The target nodes are identified lopting a node with the same component name,
behaviour name and type. Another property of rememodes is that when a reversion executes,
every thread which was a descendent of the taggie is terminated. The purpose of this is to avoid
having sub-threads continue to execute while ttesient thread has re-started.

Figure 13 (c) shows a thread kill node. Theppse of thread kill nodes is to terminate another
thread. Figure 13 (d) shows a synchronisation nédatrol flow remains blocked at this node until
all of the other nodes involved in the synchromisahave been reached. In this thesis, these nodes
will be referred to as th&ynchronising partnerd he synchronising partners are identified byifigd
other nodes with the synchronisation flag. Wheafdlie synchronising partners are ready to execute
the node may execute. If the synchronisation n@deonditional node, its condition is only evaluat
ed after all of its synchronising partners havenlreached. Note that a synchronisation flag can be
used in conjunction with one of the other typeflagfs, in order to cause a reversion, reference or
thread kill node to synchronise.

A A A =>
[a] [a]
(a) Reversion (b) Reference
A -- A =
[a] [a]
(c) Thread Kill (d) Synchronisation

Figure 13. Behavior Tree Flags

Behavior Trees are able to handle set operafidressyntax for this is shown in Figure 14. In the
nodes in the figure, andT are set attributes of the componenthe same set operations can also be
performed on sets that are components themselliesaddes correspond to the following:

(a) Addition to a setThe element is added to the sét

(b) Subtraction from a sefhe element is removed from the s6t

(c) SetintersectionThe se6 is updated to the intersection of setndT.
(d) Set union:The ses is updated to the union of s&tandT.

(e) SetdifferenceThe set is updated to the difference between SetadT.

Behavior Trees 25

(f) Set membershipThe condition is true if the elemenbelongs to the sét This
node can also be a BTguard type.

(g) Set cardinality: The condition is true if the sgtcontains greater thanelements.
The expression can contain either <, > or =. Thdercan also be a BTguard type.

C C C
[S:=5+{x}] [S:=5-{x}] [S:=5><T]
(a) (b) (c)

C C
[S:=S+T] [S:=5-T]
(d) (e)

C C
?2%:57 25| >k?

(f)

(8)

Figure 14. Set Operation Nodes

In this thesis, the following auxiliary funatis will be used, to refer to the various elemehthe
Behavior Tree notation. The functioomgn) returns the component name of hadmdbehayn)
return the behaviour name of naddf the node defines or uses an attribatt(n) returns the attrib-
ute andattrExp(n) returns the expression involving the attributeté\that a unique name for the
attribute is given comprising the component anibatte names, to avoid confusion if other compo-
nents have attributes of the same name. For exaihfhile node i< ?A = b?, attr(n) would return
C_A andattrExp(n) would return €_A =b". The type of a node is given by the functtgpgn) and
the flag by the functiofiag(n). Two or more nodes are designatethatchingif they have the same
component name, behavior and typenditchingp,q) thencomgp) =comgq), behayp) =behayq)

[1x:S [1x:S

(a) (b)

[a]

[1x:S :> p q
7g7? 787

X p q
7g7 [b] [b]

[b] (c)

Figure 15. For-all and For-one nodes

26 Background

andtypdp) =typdq). The functiortargei(n) returns the target nodemfif nis a reversion, reference
or thread kill; it is undefined for all other nodes

For a set operation nodgthe function€omgn), behayn), attr(n) andattrExp(n) operate in the
same manner as for non-set nodes, treating theuset as either a component or attribute name and
the expression involving the set as either a bekaviame or attribute expression. Additionally,
Behavior Trees havier-all andfor-onenodes, as depicted in Figure 15 (a) and (b), ctispsy. The
nodes specify that the sub-trees below should dle@@ed over all or one of the elemenitsthe set
S. This is accomplished by expanding the sub-trémb® have one branch for each element in the
set. In each branch, every occurrenceisteplaced by one of the elements in the sgisl&for-all
node, the branches are joined by a concurrent biragnpoint, while if it is dor-onenode, they are
joined by an alternative branching point. An exasmgdlthis is depicted in Figure 15 (c). Assume the
setS contains two elements:andg. The sub-tree below tlier-all node is replaced by two branches,
one for the elememt and the other for the element

If condp,q) then nodep andq are in concurrent threads.dlt(p,q) then nodep andq are in
alternate branches of the same thread. In thisttzasode with multiple children, such/ds] in the
figures, will be referred to asmanching nodelf there is an edge linking nodeto noden, thenmis
theparentof n, given byparen{n). The noden is referred to as ehild of m. Note that in Behavior
Trees, a node may have zero or more children, giyeie functiorchildren(n), but only one parent.
The functiorchildNun{n) returns the number of childrenmméind the functiochild(n, i) returns the
i child of n. Every node has a parent exceptrtie node. The setncegn) gives theancestorsfn,
whereancegn) = paren{n) U ancegparen(n)). The setles¢n) gives thelescendentsf n, which are
the nodes that haveas an ancestor. The descendents of amfmten asub-treewith n as its root. A
node is not an ancestor nor a descendent of itself.

In this thesis, as a convention each functiay additionally be given a sub-script denoting the
Behavior Tree it refers to. For exammlemp(n) returns the component name of nade Behavior
Treeb.

2.3.2 Requirements Translation and Integration

The first step in the Behavior Engineering psxis to create individual RBT’s for each require-
ment. The intent of Behavior Engineering is to fsleva mechanism for creating a formal modeit*
of its requirements insteadfodmits requirements” (Dromey, 2003, 2005), whicttisanplished by
proposing a rigorous approach for requirementskation. Each sentence of the textual requirement
is translated into nodes by identifying the compdsand behaviour described. The nodes are given
tags corresponding to the label of the requirentemhaintain traceability to the requirements docu-
ment.

Next, each of the RBT’s are merged togetherant|BT. The root node of each RBT must match
a node in the IBT. This represents the point ativttie pre-condition of the RBT is established, so
that is the location where the RBT should be ieskif no matching node can be found, it indicates
that some information is missing from the requiretsissince the required pre-condition never occurs.
This must then be rectified by consultation with dlients or by making assumptions. If an assump-
tion is made, it is noted in the tag of the coroggjing nodes using a “+” symbol to indicate an im-
plied requirement or a “-” to indicate a missingugement. Additionally, while normal nodes are
coloured green, nodes indicating implied behavawarcoloured yellow and nodes indicating missing
behaviour are coloured red. For the purposes sthiaisis, the tags and colours are irrelevanheas t
slicing approaches that follow can be applied tp rodes regardless of their colour or tag infor-
mation. Accordingly, in some of the diagrams tlatlofv, the nodes may not have any colour and the
tags may be left blank. The following example iltages the process of integrating RBT's.

Example

Consider the RBT shown in Figure 16 on the rightresponding to a requirement numbered R4. It
states that when the oven is cooking, if the d®@opiened the powertube will be turned off. The cur-
rent IBT is given on the left of the figure. It Hasen created by merging requirements R1 to R3. The
root node of the RBT is Oven [cooking]. This is fite-condition which must be established by the

Behavior Trees 27

IBT. There is a matching Oven [cooking] node in B&, so the RBT is joined to the IBT at that
position. The final IBT is given in Figure 17.

R1 Qven
Lidle] | s
\l/ : Oven :
: |R4 :
- Button : [cooking] :
??7pushed ??° / \t/
— R — -
: Oven : RAT oo d 27"
: R2 i 77 openea 7«
: [cooking] :
\}/ 4
R2 'Oven [on]
>> time out <<
Powertube
R3
[off]

Figure 16. Identifying Matching Pre-conditions

Oven
R1
[idle]
R1 Button
???pushed ??°
R2 Ove-n
[cooking]
R2 .Oven R4 Door
>> time out << ??%pened ?7?’
R3 Powertube R4 Light
[off] [on]

Figure 17. Final IBT

2.3.3 Model Checking Behavior Trees

Behavior Trees can be translated into the ilgmguages of various model checkers to allow them
to be verified. At present, automatic translatotistdor translating Behavior Trees into the input
languages of two model checkers (Wen, et al., 2@8&)Symbolic Analysis Laboratory (SAL) and
UPPAAL model checkers. The SAL suite (de Mouralgt2004) is a set of model checking tools,
including a symbolic model checker for LTL and aibded model checker. In previous work, the

28 Background

symbolic model checker was used for verifying props on Behavior Tree models (Grunske, et al.,
2011). The UPPAAL model checker (Larsen, et aB7)@llows timed behaviour to be verified.
The process of translating Behavior Treestimanput languages of SAL and UPPAAL consists
of two stages: the parsing stage and the translatage. The parsing stage identifies a sequence of
syntax rules which can be used to construct thengBehavior Tree, in the process determining
whether or not the Behavior Tree is well-formedhtre are no syntax errors, the translation stage
begins. The SAL or UPPAAL code is produced by eiaguranslation rules that correspond to the
sequence of syntax rules. This systematic apprafmhs the translators to be easily extended or
modified, simply by changing the necessary traiwslatiles. In the final code, the Behavior Tree is
represented as a form of transition system, infvbach node or block of atomic nodes corresponds
to atransition. The code makes usprofyram counterswvhich are integer variables designed to keep
track of the current location in the Behavior Tigthere is a block of atomic state realisatiorthe
top of the tree, these are translated as thelisdimn section of the code; otherwise the roaeno
becomes the initialisation. Alternatively, the iglisation can be provided by the user as a separat
text file. For further details of the translatiompess, refer to Grunske et al. (2008).

SLICING
BEHAVIOR TREES

Creating a slice of a Behavior Tree model fefidhe same process as for program slicing. The
Behavior Tree is first converted inta@antrol flow graphthat shows the control flow of the model.
Using the information in the control flow graphettiependencies between the nodes are identified
and represented irdependence grapfhis dependence graph can then be used to iglérdifele-
vant nodes with respect to a given slicing criteriextracted from the temporal logic theorem. The
relevant nodes formslice setThe slice set is then merged back into a syethticorrect Behavior
Tree, which is the slice. Figure 18 depicts thealerocess of Behavior Tree slicing. Sections 3.1
and 3.2 define control flow graphs for Behaviorégand the underlying transition system, respec-
tively. Section 3.3 defines the various dependéyysys. Section 3.4 describes the process of merging
the slice set into a tree and the slicing algoritergiven in Section 3.5. A proof of correctness is
given in Section 3.6, which guarantees that tlve shll preserve the validity of the property aer
est, so it can be used in place of the largermalddehavior Tree for model-checking.

Behavior Control flow Dependence Slice
Tree Q graph Q graph Q

CTL
property

Figure 18. Overview of the Behavior Tree Slicing Process.
Type of Slicing

Model checking verifies all possible pathstef system. Dynamic slicing assumes that only one
path is of interest, so static slicing is the nmstable. A backwards slicing approach is required,
since the objective is to find all the nodes thfitience the criterion. This is in accordance \itter
approaches for using slicing for model checkingppges, such as Hatcliff et al. (2000) and Briickner
(2007).

The final slice will be used in place of thégaral model for verification. Therefore, it must b
executable, i.e. it should have a valid Behavi@eTstructure. There should not be any disconnected
nodes in the slice and it should conform to thegalf Behavior Tree structures, for example that al
reversions should point to an ancestor. Sincedhkviards traversal of the dependence graph might
not produce an executable Behavior Tree, an eastpyocessing step is needed to make the neces-
sary modifications to the slice.

30 Slicing Behavior Trees

3.1 Creating a BT Control Flow Graph

The first step in slicing Behavior Trees isteate 8T control flow graphBehavior Trees model
the control flow of systems, but they cannot beluasea control flow graph directly, due to the info
mation which is implicit in the tree. Specificalfpr selections, guards, synchronisations and input
event nodes, the path where the condition is sfetiis not explicitly represented in the Behavior
Tree. In a BT control flow graph, all such pathsngde represented atadsebranch from the node.
For selections, when the condition is unsatisfieelthread terminates, so an end node must be intro
duced and the false branch must link to it. Fordsiasynchronisations and input event nodes, the
control flow waits until the condition becomes skid, so the false branch must revert back to the
node itself.

Due to these differences, instead of usingtefgier Tree directly as a control flow graph, itshu
be transformed into a new structure, knownBR$ aontrol flow graphA BT control flow graph is a
directed grapit = <N,E, start, end>, whereN is a set of nodes, each representing a node Bethe
havior TreeE is a set of edges representing the flow of congrath thaE =N X N, startis the start
node anendis a set containing the end nodes. Since Beh&iveas may have multiple exit points or
may model non-terminating behaviour, the use afigue end node is impractical. As Ranganath et
al. (2007) pointed out, a single end node is neags possible, particular for systems with infinite
loops.

Similar terminology as for the CFG'’s of progsaimiassumed. Specifically, an eégeE, wheree
= (my, mp), indicates thaty, is one of the nodes which can execute immediafedymy,. The noden,

Is known as aimmediate successof my. The edge fronm, to m, is denoted bydgdm,, my,). A
trace” in a BT control flow graph consists of a sequesfeeodes 1, my, ...,m >, where for every

m, such that G< i <k, (m, m.,) € E. The functiortracg(m, m) is used to denote a trace from nagle

to m. A maximal tracédrom nodemis a trace that starts at nogeand either ends at a leaf node or
contains an infinite loop. The set of maximal t&é®m a noden is given by the functiomax-
Tracegm). For every nodmin the control flow graph, there exists a tracafroottom. Every edge

in the control flow graph additionally has a labekociated with it, to describe whether the edge
corresponds to theue or falsechoice of a node. The functitetbel(€) returns the label associated
with the edgee.

Each node in a Behavior Tree is representamyde in the corresponding control flow graph.
Control flow graphs additionally hawendnodes which do not correspond to Behavior Treesod
Apart from end nodes, the nodes in control flovpgsaretain all the information of the corresponding
Behavior Tree nodes, such as their component nantes/pes. In the rest of this thesis, the term
nodewill be used to refer to control flow graph nodedess otherwise specified.

The following steps are used to construct d@robflow graph from a Behavior Tree:
1) Create a node in the control flow graph to repretenroot node of the Behavior Tree.

2) For each node in the Behavior Tree which has a correspondingemoé¢h the control flow
graph, locate each of the childrernah the Behavior Tree. For each child, place a nod#o
the control flow graph, with an edge frantoc. In this manner, a control flow graph node will
be created for every Behavior Tree node, with egg@esenting the arrows in the Behavior Tree.

3) For a single sequential noden the Behavior Tree, locate its correspondingenodhe con-
trol flow graphm. Then, label all of the outgoing edgesméstrue. Insert an additional out-
going edge fronrmto a newendnode. Label this eddalse This represents the semantics of
selection nodes. If the condition of the selecisosatisfied, the control flow may proceed to

™ The termtraceis used instead gfathas in program CFG's to correspond with the tréfcte underlying transition
system, as described in the next section.

Creating a BT Control Flow Graph 31

all subsequent nodes; otherwise the control flawtis thread terminates. See Figure 19 as
an example.

Note that for a group of selection nodes cotatkbioy an alternative branching point, the same
method is used for handling them but the conditimesented by tHalsebranches are differ-
ent. For sequential selection nodesféteebranch represents the case where the selectam's ¢
dition does not hold. However, for a group of alsgive branching selection nodes, talse
branches of each node represent the case athef¢he selection nodes’ conditions do not hold.
For example, if the nodes wex@?andB??, then théalsebranches of each node would repre-
sentNOT(A=a) AND NOT(B=b).

A
[al
J TRUE

B >

?b?

\l/ TRUE FALSE
C

[c]

Figure 19. Representing a Selection Node

4) For each guard, synchronisation node or input ewedé (both external and internal event
types) in the Behavior Tree, locate its correspampdode in the control flow graph Label all
of the outgoing edges ofastrue. Insert an additional outgoing edge fromback to itself, la-
belledfalse This represents the “wait-until” semantics ofrgisasynchronisation nodes and in-
put events. See the following diagram as an exartfgleynchronisation node is also a condi-
tional node, it will have twéalseedges in the control flow graph: one represerttiedalse
case of the condition and one for when the synésiranppartners have not yet been reached.
The following diagram illustrates this.

A
[a]
J TRUE

8 >

?2?% 2?7

V)

C TRUE
[c]

Figure 20. Representing a Guard Node

The following table summarises how each tyjpBehavior Tree node is represented in the BT
control flow graph.

32 Slicing Behavior Trees

Behavior Treenodetype Representation in the BT control flow graph

State realisation or output evenRepresented by a single node; see Step 2 above.

Selection Represented by a node witle & falseoutgoing edges, where
falseleads to an END node; see Step 3 above.

Guard, input event or synchroniRepresented by a node withe & falseoutgoing edges, whete
sation falseloops back to the node; see Step 4 above.

Table 1. Representation of Nodesin the BT Control Flow Graph

There are some significant differences betveeBm control flow graph and the CFG’s normally
used for programs. These differences are unavadii# to the differences in semantics between
Behavior Trees and programs. Specifically:

= The nodesin a BT control flow graph may have ntioa@ two successors. This is due to the
presence of concurrent and alternative branching.

= A BT control flow graph does not have a unique eode. Furthermore, each end node de-
notes the termination of a thread, not the enyiséesn.

= Edgesin a BT control flow graph retain informateout their type, such as whether the
edge is atomic or sequential.

= Reversion and reference nodes alter the contne| #ithough in a CFG only the edges de-
note flow of control.

3.1.1 Concurrent Branching

The threads of a BT control flow graph are tetceeach start at the root node and continue aintil
leaf node is reached. See Figure 21 for an examifiés. Note that due to alternative branching and
conditional nodes, there may be more than onenledé per thread. Each thread is given a unique
identifier. Each node may belong to more thantbread. The identifiers of the threads which a node
m belongs to are given by the functibmeadgm).

The concurrency models used by Krinke (1998)Nanda and Ramesh (2000) are unsuitable for
Behavior Trees. In Nanda and Ramesh (2000), thplpexthe use of two different concurrency
models, one which they describe as having a comittrleaving semantics and one which depicts
the concurrency semantics in Java. Concurrencglivaiior Trees also follows a complete interleav-
ing semantics, as each thread operates fully adlpbwith the others, unless synchronisation nodes
are explicitly used. Despite this, the model thantlh and Ramesh claim has a complete interleaving
semantics is still not adequate for describinghheads in Behavior Trees. Their concurrency model
has implicit synchronisation points at the endsawh thread. This arises due todbéeginandco-
endstatements in their model; the former representiagpoint at which two or more threads begin
and the latter the point at which they end and mbegk to the parent thread. Tdeeendstatements
act as a synchronisation point between the thread=sach of the threads must finish their behaviour
completely before control reverts back to the patfmead. This is not the case for Behavior Trees.
There is no equivalerb-endlocation, since the threads may finish at any tiregardless of what
stage the other threads have reached. For thimreaken an end node in a BT control flow graph is
reached, it signals the termination of that paldicthread only, not the entire system. The other
threads can continue to execute. This is diffei@thhe CFG’s of programs, in which the end node
represents the termination of the whole program.

BT Control Flow Graphs as Transition Systems 33

Fr Vi
P | i
i any
| |
gy
>

//')

[PN

l |

I —wv | —wv

l f

I i

| Y 1 Y

| I,

\ I,

~ S

Figure 21. Threads in Behavior Trees

3.1.2 Alternative Branching

When programs contain dn.elseif...elseonstruct, this can be modelled in a control fipaph
using only two successors per conditional nodshasn in Figure 22.

1 if (x>2)then
2 y=1;
3 elseif (x==15) then
4 y=2;
5 else

6 y=3;
7 outputy;

Figure 22. If-else Branching in Programs

However, alternative branching cannot be modeletthis way. The difference is in the order of
evaluation of the conditions. For dirconstruct, each condition is only evaluated ifgrevious one
failed. In an alternative branching group, the oidevhich the conditions will be evaluated is not
specified. For this reason, alternative branchargresult in a node having multiple successors.

3.2 BT Control Flow Graphs as Transition Systems

It is useful to interpret the execution of a &dntrol flow graph as a doubly-labelled transition
system, in order to reason about the behaviouregystem in terms of the underlying states and

34 Slicing Behavior Trees

transitions. The interpretation of BT control flgraphs as transition systems as described heee corr
sponds with the existing translation into SAL (Gskm, et al., 2008).

Recall from Section 2.1.1 that a doubly-lalgktl@nsition systemis a tuple= ($, AP, J, .4 —).

In a BT control flow graph, the nodes representiduesitions between states rather than the states.
The states of the system are not explicitly repriese Nonetheless, for every BT control flow graph
G = <N|E, start, end>, a set of state$ can be constructed, where each state representsitfent
evaluation of the system. L&{ represent the set of uniquely-labelled variabigs, where each
variablev e 2 belongs to one of the following subs&smponentsAttributes Messagesr Synch-
Labels The ranges of these types are as follows:

= |f ve Componentghe range isf| 3me N, wherecomgm) = v andbehaym) = b},

» if ve Attributes the range isH | 3 me N, whereattr(m) = v andattrExp(m) involves a be-

haviourb}, or

= if ve Message®srv e SynchLabelghe range ist{ue, falsg.

When BT control flow graphs are interpretediagbly-labelled transition systems, each state is
defined in terms of the atomic propositions whioldhn that state, given by the labelling functién
The atomic propositions are given as the currealuetion of variables ir?; denoted by pairs of
variables and their values using the following tiota for eachs € S, if a variablev € 2/ has the
valueval, then ¢, val) € .£(s). The set of atomic propositions which hold inaeg state is dependent
on the nodes which have executed so far. Noteé#wdit node or block of atomic nodes may be able to
execute in many different states. That is, for eexten, there exists a set of pairs of stags)(such
that when the system is in staté is possible to executeand result in stat. This is due to concur-
rent branching. When a Behavior Tree is execusiageral threads may be executing at once, each
represented by a separate branch in the treedémis about to execute, the only certainty is the
current location of the thread which contamsll other threads may have reached any location.
Therefore, the overall system could be in onewéis® possible states. In a similar manner, theroth
various constructs of the Behavior Tree languageh sis reference nodes and thread kills, could
cause the system to be in any one of many diffestatés when it is ready to execute a particular
node.

If a node changes the value of a variableérsifstem, the stagbefore the node executes has a
different labelling to the stageafter the node has executed, i¥s) + .£(S). Otherwise, the states
have the same labelling, i.€(s) = .£(S). The nodes which can change the value of a biiare
state realisations, internal output and interralliimodes. If a state realisation node executesdi-
fies a component or attribute. In the next stéat component or attribute has a new value but all
other variables have the same value. Internal ouipdes cause the message variable to change to
truein the next state. Similarly, internal input nodasse the message variable to chanfgdde to
indicate that the message has been consumed! Btraalnodes, such as selections, the purpose of
the node is only to direct the control flow, nottmnge the state of the system. Therefore, the nex
state after the node has executed is identichktprevious state. This is described in Definitién
below, wheres is the function override operator. A functigpdategn) returns a set of variable and
value pairs, which are the variables modifiechlaynd their new values. Note that it is a singleieimn

DEFINITION 10. UPDATING STATES
If a noden executes in a stag2leading to a new stags .£(s) =.£(S) @ updategn):
» if nis a state-realisation, whemo(mgn) = C andbehayn) = b) or (attr(n) = C_A andat-
trExp(n) =“C_A:=b"), thenupdatef) = {(C, b)} or updateén) = {(C_A b)}, respectively.
= if nis of typeinternalOutput wheremis the message being sampdateén) = {(m, true)},
= if nis of typeinternallnput wheremis the message being samdate¢n) = {(m, falsg} and
= for all other typesypdategn) ={}, i.e. .£(s) = .£(S).
]

BT Control Flow Graphs as Transition Systems 35

Following the conventions of model checking, siet7 of initial states contains all possible states
unless it is restricted. If the Behavior Tree begiith an atomic block of state realisatiofsjs
restricted to the states in which those comporamdsttributes have the given values. Otherwise, th
initial states are only restricted by the root ndtlee set7can be left unrestricted by using a blank
node as the root of the tree. The funciiot{T) returns the initialisation nodes for the givemsition
systemT, i.e. either the root node or the atomic blocktafe realisations at the top of the tree.

Selection nodes and other conditional noddateithe direction of control flow based on whether
their guard holds in the current state. The guhalanditional node is an expression involving a
variable of the system. If the expression holdbeécurrent state, the guard holds. In this casepb
thetrue branches in the control flow graph is taken nettterwise théalsebranch is taken. Defini-
tion 11 gives details of the possible evaluatidns guard in a particular state, given by a funrctio

guardn, s): (N x S) — Bool. The function returnsue by default if the node has no guard.

DEFINITION 11. GUARDS OF CONDITIONAL NODES
For a noden, in a states e S,
= if nis of typeBTguardor selectionwherecomgn) = C andbehayn) =g, thenguardn, s) =
trueiff (C, g) € .£(9).
= if nis of typeBTguardor selection whereattr(n) = C_A, thenguardn, s) = true iff (at-
trExp(n), true) € .£(s).
= if nis of typeinternallnputor externallnputandm s the unique name of the message, then
guardn, s) =trueiff (m, true) € .£(s).
= for all other typesguardn, s) =true.
[

Similarly, synchronisation nodes have an assediguard, known as tegnchGuardto indicate
whether or not all of the synchronising partnergetexecuted. The reason it is considered separately
to other types of guards is that a node can beg®ghchronisation node and a BTguard, selection or
input message node. In such cases, in a part&taka;, the node’s guard may evaluate to a different
value than its synchGuard. A functiepnchGuaréh, s): (N x S) — Boolis defined below, which
returngrueif all of a node’s synchronising partners havecexed andalseotherwise. If the node is
not a synchronisation node, the function retinne

DEFINITION 12. SYNCHRONISATION NODES
For a noden, in a statese S,
= if nis a synchronisation node, theynchGuar¢h, s) =trueiff all of n's synchronising part-
ners have executefdilseotherwise.
= if nis not a synchronisation node, tregmchGuaréh, s) =true.

As seen so far, the current state is depelaehe sequence of nodes that have executed. Gbviou
ly, not every sequence is allowable for a givencBtrol flow graph. From each state, only a small
set of nodes are permitted to execute. Thesearmttes that have been reached so far in eact.threa
In a given stats and a threatl the nodes which are ready to execute next aendiy a function
ready (s): N — 2". Definition 13 defines this. In general, when @eo executes, the nodes which
can execute next are its immediate children. Howekies differs ifn has a guard or synchGuard
which evaluates tfalseats. For the synchronising caseremains as the next node to execute, since
it is still waiting for its synchronising partnexsbe reached. Recall that if a synchronisatiorensd
also a conditional node, its condition must onlgtaluated when all of its synchronising partnegs a
ready to execute. Therefore, the node’s guardlisaamsidered when its synchGuard evaluates to
true.

In a given state, if a node’s synchGuatdis, butn has a guard that evaluateaise the children
reached vian's falsebranch become the next to execute. In the casel@dtions, the next node to

36 Slicing Behavior Trees

execute will be an end node, whereas for BTguardsrput events, it will ba itself. If the guard is
true, i.e.nis free to execute, then its immediate childrerthétrue edge are chosen next, unless
areversion or reference node. Additionally i a thread kill node, the threads of its targetaare
terminated, so no more nodes will execute in thimsads. The functioready(s) returns an empty
set for those threads.

If nis a reversion or reference node, the next narlexdcute are the immediate children of its
target. This allows the control flow to jump to thew location. Recall that threads in BT contrmhl
graphs start at the root and extend down to tHantmdes. Therefore, the target node belongs to the
threads of all of its descendents. After the rewarsll of these threads will be ready to exetige
target node’s children. As an example, consideBtheontrol flow graph in Figure 23. Assume that
thread 2 has just executed node 7. Assume thréaehExecutes the reversion to node 1. After the
reversion, the next node to execute in both thresaaisde 2.

/ ------- Thread 1
P 1|
R}
: 2 I """"""""""" Thread 2
) QYA |

| 4 i 7

} V4 i v

| 5 || 8

Cllan] o

\ h

\\ // "".

Figure 23. Execution of a Reversion

Atomic blocks are handled in a similar fashidhe only difference is that all nodes in the atomi
block must execute before control passes to tt@rehiof the block. Therefore, if there are any-syn
chronisation or guard nodes whose guards evalo&éseats, the entire block cannot execute.

DEFINITION 13. CONSTRUCTION OF THE READY FUNCTION.
Thereadyfunction is constructed as follows:

For all states € .7, for all threads, ready(s) = {root}.

For all other states < S, letn be the node executed in state reach statg, wherese S Then:
() if synchGuar¢h, s) =false thenready(s) = ready(s),

(i) if (i) does not hold anduardn, s) = false then
ready(s) = {m|paren{m) = n andlabeledgén, m)) =falsg,

(i) if (i) and (ii) do not hold and is athread killnode, then for all threadsuch that
t € threadgtargei(n)), thenready(s) = {},

(iv) if (i) and (i) do not hold and is areversionor referencenode, then for all threadsuch
thatt € threadgtargein)), ready(s) = {m|paren{m) =targetin) and
labelledgdtargetn), m)) =true} and

BT Control Flow Graphs as Transition Systems 37

(v) if (i), (i) and (iv) do not hold, then for all teads such that threadg¢n),
ready(s) = {m|paren{m) = n andlabeledgén, m)) =true}.

If, instead of a single node a block of atomic nodds= {n,, n,, ...,n} were executed in statgto
reachs, wheren, is the top node of the block ands the last node, then each of the statements (i) t
(iv) must be considered in that order. For eadestant, if anyn, € b satisfies the condition of the
statement, then that statement must be applieditmo node in the atomic block satisfies anyhef t
conditions in statements (i), (ii) and (iv), theatement (v) must be applied. However, statemgnt (v
must be modified to:

If (i), (ii) and (iv) do not hold, then for all teads such thatt threadgn)),
ready(s) = { m| paren{m) = n, andlabelledgén,, m)) =true}.

Example

Consider the control flow graph shown in Figkde There are three threads, labelled 1, 2 and 3.
Thread 1 consists of the nodes A[a], B[b] and G[¢jread 2 consists of A[a], C[c] and D???d???.
Thread 3 consists of A[a], C[c], E[e] and the Afeyersion.

At an initial statep € J, the ready sets for all three threads contain @y oot node, Ala).
Initial state:readyi(s) = {A[a]}, ready(s) = {A[a]}, ready(sy) = {Ala]}.

After A[a] executes, at stasg there is a choice between executing B[b] and @&}. The ready set
for thread 1 will contain B[b] and the ready setstfoth other threads will contain Cic].

After Ala] executesteadyi(s,) = {B[b]}, ready(s;) = {C[c]}, ready(s,) = {C[c]}-

Assume that CJc] is chosen, reaching stat€hen the ready set for thread 1 will remain ungfeal,
while the ready set for thread 2 will be updateD®@d??? and the ready set for thread 3 will be up-
dated to E[e].

After C[c] executesteady(s;) = {B[b]}, ready(s,) = {D???d???}yeady(s,) = {E[e]}.

Assume D???d?7?? is chosen next, reachingsstated assume that the condition does not hold. Then
the ready set for thread 2 will be updated to éorid®??d??? again, as it is a child of itself, taed
other ready sets will remain unchanged.

After D???d??? executeadyi(ss) = {B[b]}, ready(s:) = {D???d???ready(ss) = {E[e]}-

Next, assume the node E[e] is chosen, reachirgsstdhe ready set for thread 3 will be updated to
the reversion node.

After E[e] executeseadyi(sy) = {B[b]}, ready(s,) = {D???d???}eady(s,) = {Ala]"}.
Then assume the reversion node A[a]" executed)irepstatess. The ready sets for all three threads
are updated. The ready set for thread 1 is uptiathtain B[b], because the thread was terminated

and then re-started. The ready sets for threadd 2 are both updated to contain C|c], as these two
threads were both terminated and Cjc] is readyx¢aue next.

After A[a]* executeseadyi(s;) = {B[b]}, ready(ss) = {C[c]}, ready(ss) = {C[c]}.

38 Slicing Behavior Trees

A
[a]
B C
[b] [c]
D D E
[d] 22°d 2?7 [e]
N2
A N

[a]

Figure 24. Example to illustrate ready sets.

Using these definitions, a BT control flow dgnagan be represented as a doubly-labelled tramsitio
systemTl = (S, AP, 7, £, #,—), whereS'is a set of stateAP is a set of atomic propositiongis a
set of initial states is a labelling on stategt’is a set of actions representing nodes-and: § x
A x Sare the transitions. As a short-hand, the notznie@-» s’ corresponds tas(n, S) € —,
which corresponds to the execution of the nade

Arunp=<sy, Ny, S, N, & ...> in a doubly-labelled transition systé@ns a sequence of alternating
states and nodes, starting and ending at stajgsthdc = <, 53, ..., S IS @ sequence of states de-
rived from a run by removing all the nodes from gegjuence. Similarly, aexecution trace
o = <ny, Ny, ...,N_1> is a sequence of nodes derived from a run by vemall the states from the
sequence. The functionn(rr) takes a path as an argument and returns thesporrding run. The
function rungT) returns the set of all runs in the doubly-lab#lleansition systenT, while
pathgT) returns the set of all paths atrdcegT) returns the set of all execution traces. The
function preTracegs) returns the set of traces= < ny, ny, ..., N 1> that correspond to a run
p=<%, Ny, S, M, S ...N, S>, i.€. the traces which cause the system to i€atds. The notatiop(s]
denotes the prefix of the rgrending at (and including), while p[s) returns the suffix gb starting
at (and includingy. The same notation will be used for paths andwgi@ttraces.

3.3 Dependencies

After the control flow graph has been consedcthe next step is to creatdependencgraph
from the control flow graph. A dependence graghdgrected grap® = <N, E>, whereN is a set of
nodes andE =N x Nis a set of edges. For an edger{) € E, the notationn; >— n; is also used,
indicating a dependency fromto n,. That is, nodey; dependsonn,. Unlike control flow graphs,
edges in a dependence graph can link two nodesdiifenent threads. The dependence graph is
created by identifying the various dependenciesden nodes. A pathin a dependence graph is a
sequence of nodes such that for every pair of coise nodes in the sequenag, {ni.1} € =,

n >— N1, Whered is a label identifying the type of dependency. Types of dependencies are
control, data, interferencemessagesynchronisatiorandterminationdependencies. The definitions
for each type of dependency are given in Sectidhd & 3.3.6. These definitions utilise the nagion
of the Definition SetEF(n)) and Reference SEREFRN)). Informally, DEF(n) contains all the com-
ponents and attributes that are defined or mod#iesbden andRERn) contains all the components
and attributes that are referenced. & the following definitions, assume tl@dt a component,is a

Dependencies 39

behaviour name) is a Behavior Tree node,andb are attributes of, S andT are sets anglis an
element of.

DEFINITION 14. DEFINITION SET
LetDEF(n) represent the set of components and attribuferedeat node. Specifically, if the node
is of the form:

i) (state-realisation) C [s], then€<ZDEF(n),
ii) (state realisation of attributes) C [a := g], tierac DEF(n),

iii) (adding/ removing an element from a set) C [S = or C[S := S - X], then § DEF(n),
iv) (union/ subtraction/ intersection of sets) C[S:# T]orC[S:=S-T]orC[S:=S><T],
then S DER(n).

[]
DEFINITION 15. REFERENCE SET
Let RERN) represent the set of components and attributesereed at node n. Specifically, if the
node is of the form:
I) (selection/guard) C ?s? or C ???7s???, theREHDN),
ii) (selection/guard over attributes) C ?a = exp? 2P %a = exp???, where exp is an expression or
a behavior, then C_ aREHRN),

i) (state realisation of attribute) C [a :=f(b)], wl&(b) is an expression over b, theaREHN),
iv) (selection over set predicates) C ?x : S? or C{#3ar C ?Spa m?, wherex € {=, >, <, <,
>}, then Se REHNn).

3.3.1 Control Dependence

Control dependence occurs when one Behavierrigde controls whether or not another node will
be executed. The definition for control dependeses follows.

DEFINITION 16. CONTROL DEPENDENCE
For two nodep andqin a control flow graph, nodgis control-dependent on nogedenoted as

(p o4), iff node p has at least two successorandn, such thap # m, where:
* labelledgép,n)) =falseand

« dmremaxTracefm) such thatje zandV'r € z, wherer = mandr =+ q, for all edgegfrom
r, labele) = true.
]

This definition captures the usual meaningotiol dependence. A nodés control-dependent on
a nodep if there are two possible outcomes after executtingone scenariqis reached, and in the
other scenariqis not reached. The definition requires that tiaeeeat least two successangndn.
The requirement that cannot be the same nodgassures that no node can have a control depend-
ency to itself. The first criterion is thatmust be reached viafalseedge. Sincéalseedges only
reach end nodes or a loop, this implies that tisesidrace fronp on whichq is never reached. Note
thatn may bep itself, as dalseedge may loop back o The second criterion is that there is a maxi-
mal path fromm on whichq occurs and none of the other nodes on the pathdfalseedge. This
ensures that none of those nodes can induce akdependency tq as well.

The traditional definition of control dependerig unsuitable because BT control flow graphs do
not necessarily have a single end node. The netrotdiependence definitions of Ranganath et al.

40 Slicing Behavior Trees

(2007) are designed for non-terminating systemsveyer, those definitions are also unsuitable for
BT control flow graphs due to concurrent and akéiue branching! Ranganath et al.’son-
termination sensitive control dependeifsee Section 2.2.2 on page 18), requires thdye topath
from one of the successorsppdn whichq never occurs qo always precedes any occurrence.of
Using the same criterion for BT control flow graphduces control dependencies from branching
nodes tall of their descendents. To see thisplbe a node with more than one child due to branch-
ing andg be one of its descendents. Since there is moneoti@path frorp, it will always be possi-

ble to find a path on which never occurs, by following one of the other bragschAlthough the
descendents are indeed controlled by the decidiarhich branch is taken, they are not actually
dependent on the branching nguigself. Even ifp was removed, the system would have the same
behaviour, since the closest ancestqy iof the slice would become the new branching node.

Example.
Consider the BT control flow graph in Figure 25eB\though the execution of the natje] is de-
pendent on the choice made after the branching Bibfiehe nodes[b] itself is not the controlling

A
[a]
B
[b]
C D
[c] [d]

Figure 25. BT Control Flow Graph with Branching

element. I8[b] was removed and the branching node beagaiethe behaviour af[c] will remain
the same.

Ranganath et al.’s definition (2007) requilhedfor all paths from one gf's successors,always
occurs or always precedes any occurrenge ©his requirement is too strong for BT controlilo
graphs. There may be a patlytehich contains alternative or concurrent branchebowing these
branches would lead to paths that do not regelven thouglp may still be controlling whether or
notq executes. For this reason, the second requireshBetfinition 16 only requires thétere exists
a path leading tq.

Example.

Consider the BT control flow graph in Figure 26eTtodeB?b? has two successot$e] and the end
node. The end node satisfies the first criteriocootrol dependency, as it is reached Valseedge.
FromClc], there is a path on whid@{d] occurs and another on which it does not occurthet[e]
branch. Therefore, if the requirement was #tlapaths fronC[c] must reachD[d], the requirement
would not be satisfied, so there would not be arobdependency frond[d] to B??. Despite this,
the selection node does indeed control whethepobfa] can execute. This can be identified by
requiring only thathere exista path fronc[c] that reacheB[d]. Similarly,B?b? controls[e].

™ The dependencies that arise from alternative biagare captured itermination dependencgiven in Section 3.3.6.

Dependencies 41

[d] [e]

Figure 26. A Controlling Node with Branching Descendents

Non-termination

The termmaximalrequires the trace to either end at a leaf nodemtain an infinite loop. Most
leaf nodes in Behavior Trees are either reversionsference nodes, which cause the control flow to
revert to another location. However, this changeointrol flow is not represented as an edge in the
BT control flow graph. Therefore, the maximal pathib end at the leaf nodes. The implication of
this is that a noda can never control an ancestagreven if the ancestor can be reached via a rever-
sion or reference node. In this casés not actually controlling whether or not its estor executes,
but whether it executdsr a second timeT he first timen is reached, it will execute regardless of the
controlling nodem below. The nodeis actually controlling the reversion or referenoee, which
in turn dictates whether or notvill be reached on a subsequent iteration. This doéresult in any
difference in the final slice. As will be seen iacBon 3.4.3, if noda s in the slice, the reversion or
reference node below will be included as well. Buis control dependency to, this will in turn
result in the inclusion ah.

This can be thought of as similar to NandaRahesh’s (2000, 2006) approach of differentiating
between normal data dependencelaop-carried data dependenaehich is data dependence arising
from a previous iteration of a loop, although tledproach does not address control dependencies
induced by loops. One advantage of consideringalfependence in this way is that it is computa-
tionally easier to explore paths up to the leafasazhly, without following the paths created byerev
sions or reference nodes. Another advantage wéléba in Chapter 4, for identifying paths which are
infeasible

Example.

Consider the Behavior Tree in Figure 27. The go&®??? controls the reversion but not its ances-
tors. If the guard is not satisfied, it would oplgvent its ancestors from executing on futureiter
tions, not the first time.

42 Slicing Behavior Trees

[a]

Figure 27. Control Dependency to a Reversion.

The goal ohon-termination sensitive control depende(Ranganath, et al., 2007) is to identify
nodes which control possibly infinite loops. In Betor Trees, the loops created by reversion nodes
are often not controlled by any conditional nodésis, control dependency is not sufficient for iden
tifying all the reversions and references whichreeessary. Section 3.4.3 will present a method for
identifying relevant reversions and reference nedésut requiring control dependence.

Types of Controlling Nodes

Using Definition 16, the only nodes that catiuce control dependencies are those with an out-
goingfalseedge. These are either: selections, guards, symehtions or input events, referred to
collectively as conditional nodes. This producaseful result: that every descendent of a condition
node is either directly or transitively control @éaplent on it. The reasons for this are simplecales
are control dependent on their nearest conditmzgstor, which will in turn be control dependamt o
their nearest conditional ancestor and so on. dlf@fing lemma demonstrates this. This result will
be utilised for the proof of correctness for sligipresented in Section 3.6 on page 84.

LEMMA 1. ESTABLISHING CONTROL DEPENDENCE USING GUARDS
For any node, such thatonditiona(n,), Vn, € des¢n,), n of n,.

Proof.
(By induction over the number of conditional nobesveem, andn,).

Base Caseny is the closest ancestor mfwhich is conditional,
i.e. Vn|n e des¢n,) A n € ancegn,), NOT(conditiona(n)). 1)

conditiona(n,)

= n, has two successansandn;, wherelabelledgén,,n)) =false 2
ny € des¢n),

= Jn e maxTrace§) such thah, € x.

From (1),V n, € &, wheren, # n,, for all edge® fromn,, labele) =true. 3)

Dependencies 43

From (2) and (3), and by the definition of contlependence, .o ny.

Induction Stepn, is not the closest ancestompivhich is conditional. Let, be the closest ancestor

of n, that is a conditional nod8&incen, € des¢n,), assume that, o n,.

conditionaln,)

= n, has two successansandn;, wherelabeledgén,,n)) = false 4)
ny € des¢n,),

= Jn e maxTraceg,) such thah, € z.

Sincen, is the closest ancestormfsuch thatonditiona(n,),
YV n, € m, whereny # n,, for all edge® fromn, label(e) =true. (5)

From (4) and (5), and by the definition of contlependence, N ny.
Thereforeny ﬂ ny.

3.3.2 Data Dependence

Data dependence is defined in the same way @sdgrams. A node is data dependent on another
if it refers to the state of a variable (comporwrdttribute) that the other node defines or upsd&ier
example, a selection nodetton ?pushed? would be data-dependent on a state realisatubeBuo-
ton [pushed] or even a nodButton [released]. If there is a component or attribitthat is in the set
REHQ), then the node s data-dependent on any n@der whichcis in the seDEF(p), as long as
is not re-defined by another node on the path mtwandq. This dependence refers only to two
nodes in a single thread. Data dependence betweles in parallel threads is referred tingerfer-
ence dependen&nd is covered in the next section.

DEFINITION 17. DATA DEPENDENCE.
For two nodep andqin a control flow graph, nodgis data-dependent on noplgp ~ad), iff:
» dce DERp) such that € REFQ),

o dx=tracgp, q), wherev ke n, c ¢ DEF() and
* —(condp, 9).]

3.3.3 Interference Dependence

Interference dependence is the same as datadhapce except that the two nodes involved are in
parallel threads. For example, in Figure 24 on gdgéhe nod®??d?7?? is interference-dependent
on the nod®[d]. It is differentiated from data dependence beceniederence dependence is intran-
sitive, unlike the other dependency types. Dubif) if a slice is created simply by following tein
tions in the dependency graph, the resulting sfiag be imprecise, containing unnecessary nodes.
This concept is covered in further detail in ChagteThe definition for interference dependence
contains the same requirements as for data depemdexcept that the nodes must be in parallel
threads and therefore are not required to be cteuhéy a path in the control flow graph.

DEFINITION 18. INTERFERENCE DEPENDENCE.
For two nodep andqin a control flow graph, nodgis interference-dependent on naile

(0 % g, iff

44 Slicing Behavior Trees

+ dce DERp) such that e REFq) and
« condp, 9. [|

3.3.4 Message Dependence

Message dependence is very similar to datandigmee, except that it arises from internal input
and output nodes. Each internal input node is ngesdapendent on all internal output nodes that
send the message it is waiting to receive. Fomgi@ an internal input nodentroller >lowAir<
would be message-dependent on an internal outplgtsansor <lowAir>. There may be multiple
senders and multiple receivers. As with interfeeasiependence, message dependence is intransitive
because it can occur between parallel threadstrigti@put and output message nodes do not induce
message dependencies, since they represent ilmiesagith the environment, not with other nodes in
the control flow graph.

DEFINITION 19. MESSAGE DEPENDENCE.

For two nodep andgin a control flow graph, nodgis message-dependent on npdgp >™¢ ¢ iff;
« typgp) = intOutputandbehayp) = mand

e typ€Q) = intinputandbehayqg) = m [

Message dependence is similar to Labbé etraltisn ofcommunication dependenz007) for
communicating automata specifications, which dbssricommunication occurring between two
automata via channels. Tiiterference control dependengiLuangsodsai and Fox (2010), used for
slicing statecharts, also performs a similar puegosnessage dependence. Interference control de-
pendence occurs when an event in a statechaigderted by a parallel action. This can be seen as
similar to an output message triggering an inpugésage in a parallel thread.

3.3.5 Synchronisation Dependence

Synchronisation dependence refers to the depeadbetween a group of synchronising nodes. For
example, if three nodes, all labellegh] but in different threads, are synchronising wilbleother,
each will be synchronisation-dependent on eatheobthers. Synchronisation dependence is thus
symmetric. Note that since synchronising nodes haweesuccessors in the control flow graph, a
synchronising node induces a control dependenite descendents. Additionally, the synchronising
node is itself dependent on its synchronising jgastiThe result of this is that the descendends of
synchronisation node are transitively dependeratloof the synchronising partners.

Although synchronisation dependence occursdmtyarallel threads, it does not suffer from the
intransitivity problem. Intransitivity of messagedinterference dependence occurs when a node
IS message or interference-dependent on ammognother thread, which is in turn message er4nt
ference-dependent on a ngmie the first thread, whegcannot execute befone In such a casep
cannot be dependent prand it is not necessary to inclyd@ the slice. In contrast, if a nodeis
synchronisation-dependent on a nodlea second thread cannot be synchronisation-dependent on
another node in the first thread, since there dabedwo synchronising partners from the same
thread.

DEFINITION 20. SYNCHRONISATION DEPENDENCE.
For two nodep andqin a control flow graph, nodgis synchronisation-dependent on nggle

(p > q iff
« flag(p)= synchandflag(g)= synchand
e matching(p,q) [

Dependencies 45

3.3.6 Termination Dependence

All of the dependencies discussed so far ags dmenablethe dependent node to execute. For
instance, a nod® is control-dependent on a nagethenn, needs, in order to execute. If a node
is data-dependent on a nadgthenn; may potentially create the conditions under winiogtan exe-
cute. However, there are some types of nodeslihayspreventother nodes from executing. Thread
kill nodes are the most obvious of these. A thiglhdode terminates the thread that it is refegtio.
Thus, any node in that thread can suddenly be neted during its operation.

When a reversion node executes, all threatig/tita started after the top reversion point areite
nated immediately (see Section 2.3). Every noa# of these sub-threads are therefore dependent on
the reversion node. For example, in the Behaviee3 shown in Figure 24, noslg] is termination-
dependent on the reversion nade], sinceB[b] belongs to a thread that will be terminated if the
reversion executes.

The final dependency type in this category@lpced as a result of alternate branching pdints.
one of the root nodes of the branches executeghalt branches are terminated. Thus, every node in
each branch is dependent on the root nodes oftieelaranches. For example, in the Behavior Tree
shown on the left of Figure 28, both nodgg andP[p] are termination-dependent bfd]. The node
D[d] is termination-dependent @ifx].

DEFINITION 21. TERMINATION DEPENDENCE.
For two nodep andq in a control flow graph, nodgis termination dependent on nggle

(0~ qift
e (typdp) =threadKill) andq € des¢targe{(p)) or

* (typdp) =reversion andq € des¢targe(p)) A p ¢ descq) or

* (alt(p,9) andq e des¢paren(p)).
]

In other words, a nodgs thread-termination dependent on a npdeand only ifp is either:
i) a thread kill node which terminatg's thread, or
i) a reversion node which terminatg's thread, unless it is a descendent,adr
iii) a root node of a branch in an alternative loldang set, wherg belongs to another branch in
the set.

Example.
The following example illustrates the importaraf termination dependence. Assume that the

theorem to be verified G(F(P = p A C=c)). In other words, it is always the case that eveiyttiee
componen? has a value and the componenthas a value. Consider the Behavior Tree in Figure
28. The Behavior Tree on the left is the originaét If termination dependencies were not used for
computing the slice, the nod¢d] would be removed, producing the slice shown omiti. How-
ever, the two trees behave very differently. Tle®tbm holds on the slice, while it does not hold on
the original tree. In the slice, the nddg] is always eventually reached, but in the origires, if the
D[d] branch is choseR[p] will never execute since its branch is terminaléils example illustrates
the need for a dependency type that describesrtating behaviour.

46 Slicing Behavior Trees

o]
[x]
P
[x]
C D
[c] [d] C

\ [c]
N 5

[p] P
[pl]
Original Behavior Tree Slice without termination dependence.

Figure 28. Example of slicing without termination dependence.

3.4 Creating the Slice

After the dependence graph has been creagsfih#thstep is to produce the slice based onengiv
slicing criterion. In traditional program slicintipe slicing criterion is a set of variables andates
ment of the program. The goal is to determine #daes of the given variables at that point in the
program. When slicing for verification, howevere tipoal is to determine the validity of a temporal
logic property. This means that there may be nwae bne node to be used as the starting point for
traversing the dependence graph. The slicing mités extracted from the temporal logic theorem
which is to be verified. The criterion is a setsisting of every node which modifies the stateraf o
of the variables mentioned in the theorem. For Beind rees, this amounts to every state realisation
or set operation which updates a variable in teertm. In the following, for a temporal logic theo-
reme, the theorenp is said taontaina variabler if vis mentioned in the formula. The slicing crite-

rion is defined with respect to a given CRlformulag, as given by the definition below. The nodes
in the slicing criterion will be referred to henogh ascriterion nodes

DEFINITION 22. SLICING CRITERION FOR BEHAVIOR TREE SLICING

For a transition syste® = (S, AP, J, £ N,—) of a BT control flow graph,
the slicing criteriorC,, with respect to a formulg CTL , is defined as:
Cp = {n|3ve DER(N), wherep containsy}.
]

The slice is created in several stages. Ifitbiephase, a simultaneous backward static sfice i
generated using the criterion nodes. The noddseirtiterion set form the starting points for the
backwards traversals of the dependency graphhér aiords, the set of nodes that the criterion siode
depend on, either directly or transitively, arealec. Using each of the criterion nodes as thérsiar
points, the dependency graph is traversed in reyedlecting every node that is encountered via
dependency edges. The algorithm checks whethede mas previously been encountered before
adding it to the slice, in order to prevent infintlycles caused by cyclic or symmetric dependencies
The set of nodes encountered by the traversateafdpendency graph is referred to aslibe set
given by Definition 23 below.

DEFINITION 23. SLICE SET
For a transition syste® = (S, AP, J, £ N,—) of a BT control flow graph,

Creating the Slice a7

the slice senodes_slicg(B) is defined as:
nodes_slicg(B) = {n« | nx -4 ne, for somenc € Cy}, whered € {cd, dd, id, md, sd, }d
]

The second phase involves identifying whiclersion and reference nodes to add back into the
slice. These reversion and reference nodes areudezhas the starting points for another reverse
exploration of the dependence graph, in orderdat®any further dependencies.

Finally, the nodes collected so far are re-fmfimto a syntactically correct Behavior Tree, fioign
the slice. This stage involves including additioplalce-holder nodes.

3.4.1 Observable vs. Stuttering Nodes

The criterion nodes, i.e. the nodes which diyenodify a variable in the temporal logic formula
are known asbservableAll other nodes are referred tosistteringnodes. The functioabs,(n)
returns true if and only if the nodeas observable. The stuttering nodes include tliesavhich are
reached during the backwards traversal, so wHitebakbrvable nodesustbe included in the slice,
stuttering nodes may or may not be included irstice.

For a doubly-labelled transition systém (S, AP, J, .£ N,—) representing a BT control flow
graph, the labelling? maps each state to the set of atomic proposifidPswhich hold in that state.
A slice must exhibit the same behaviour as theraignodel in terms of only a subsetAR. This
subset, denotedP,, consists of all the atomic propositiomsval) such thav is a variable contained
in the formulagp. To enable a control flow graph to be viewed imi of this subset of atomic
propositions only, the labelling on states can bstricted as well. The notatiog(s) is
used to denote the label of the statestricted to the atomic propositionsARy,. That is,£y(s) =
{(v, val) | (v, val) € APy}.

The notatiors ---~ S denotes the execution of a stuttering node itestdeading to the stat
The transitive closure of this is denotedsas-~ " s. If s -—~ S in the context ofp, then.£y(s) =
£p(S). The reverse holds as well:4,(s) = £,(s) ands was reached froraby a single step, then it
must have been a stuttering step. The notatior+! s denotes thatstuttering steps are taken after
sto reach stats.

An execution trace in a transition system<ng, ny, ...,N:> can be viewed in terms of observable
nodes only, referred to as abservable executidrace, described in Definition 24 below. The ob-
servable execution trace is obtained using a nofipnojection, similar to other approaches such as
by Hatcliff et al. (2000).

DEFINITION 24. OBSERVABLE EXECUTION TRACE

An observable execution traeg,, of an execution tragg is given byo,, = projy(o), where:
" projg(<>) =<>,
" Projp(<No, Ny ... ,N>) = <Ng>7 Projp(< My, ... ,Mc>), ifnoe Cy and
" Projo(<no, Ny, ... ,Mc>) = Projp(< Ny, ... ,Nc>), ifngé Co,.

3.4.2 Blank Nodes

As will be seen in the following sections, somesragnode may need to be included in the slice for
the sole purpose of maintaining the correct treetire, for example when a group of child nodes
require a common parent. In these cases, thedefatie node are unnecessary, btaak place-
holder node may be used instead. These are nodes lmdve no data, i.e. they have no associated
component or behaviour, and they do not cause @mn&go be executed. The advantage of using
blank nodes instead of simply preserving the oailgitode is that blank nodes have no dependencies.
The original node may have a long chain of depetidenall of which are unnecessary in the slice.

48 Slicing Behavior Trees

This situation only occurs for state realisagiavhich are dependent on an attribute. If tharmalg
node was a conditional or synchronisation nodeoitld have induced a control dependency on its
descendents and would therefore be in the slieadyr If it had been an output message node (either
external or internal), or a state realisation wwittattributes, it would not have any dependendies o
than a control dependency to an ancestor. Sinaeoithe’s descendents are in the slice, they would
also have the same control dependency, so thattaneeuld be in the slice as well. Therefore, the
only type of node which can introduce additiongetaencies is state realisations with attributes.
Since the state realisation was not originallyuded in the slice, it is irrelevant to the slicorderi-
on, and therefore the attribute’s value is alsderrant. By replacing the state realisation withaak
node, the unnecessary dependencies will be ignBlaak nodes are positioned in the tree at a specif
ic location, given by thparentandchildrenattributes in the functioblank

blank(parent children),
whereparentis the node that will become the parent of thalbfeode, andhildrenis the set of child
nodes which will now have the blank node as thaiept. Blank nodes have no correspondipg
datesor guard If a noden is a blank node theaBlankn) returnstrue; falseotherwise.

3.4.3 Reversion and Reference Nodes

Most reversions and reference nodes wouldeotdiuded using the slicing method described so
far. Nonetheless, they are essential, as theyegeseary for describing repeated behaviour and non-
terminating systems. In the following discussi@varsions and reference nodes will be collectively
referred to apjump nodesfor ease of reading.

Leaving out a jump node could result in a diw performs different behaviour to the original
model. For instance, a component might changeatatéhen change back to an earlier state after the
control flow follows back a reversion. Leaving th reversion in this case would incorrectly model
the component only changing state once. For tasomg the jump nodes must be added to the slice as
well. A jump node may introduce additional deperuilesto the slice. Therefore an additional tra-
versal of the dependency graph starting at each jusde is necessary.

Target Nodes

The next consideration is the target of a juiagbe. The target of a jump node might not already b
in the slice, so when a jump node is added tolite #s target may have to be added as well.€Sinc
the goal is to reduce the size of the slice as ragagossible, the target should not be includedinat
slice unless it is absolutely necessary. An altermés to assign a new target to the jump node. Th
location of the target node affects which nodebhwirepeated after the reversion executes, i.gwhi
nodes are involved in the loop from the reversmthe target. The new target must be as close as
possible to the original target, in order to enshe¢ the same section of the tree will be repeated
Using the closest ancestor can lead to an incalieet The ancestor was not originally involved in
the loop, so its behaviour was never repeated hBgsing it to be the new target, it will now be re-
peated whenever the jump node executes. Thisienugillustrated in Figure 29. The Behavior Tree
on the left is the original model in which nodg€ and the jump node are repeated in the loop. The
picture on the right is the slice created by chagthe target of the reversion to be nagdine closest
ancestor of the original target. The slice now amst different execution traces than the original
model. In the slice, the nodecan be repeated infinitely often, whereas it caully execute once in
the original model. Thus, the closest descendest beiused instead. This will produce a correct
slice, since the descendent was originally involvetthe loop.

Nevertheless, there is still a case that pteseme difficulties. There may be more than oos-cl
est descendent in the slice, as shown in Figurel3€e botlB andD are the closest descendents to
the target noda. In this case, using one of the descendents isuffitient. In the original model
both branches were required to re-start when trexsmn executed, due to the semantics of rever-
sions. However, in the slice, only one branch reppdathis situation, the original target node tings
included into the slice.

Creating the Slice 49

A A
.................... B C

C AR

L e
"" Sriginai Behavior Tree Slice

(Dotted lines indicate regions which will be remehtiue to the reversions).
Figure 29. Change in Loop Caused by Using Closest Ancestor

Definition 25 explains how the new target ikakated for a reversion or reference node incesli
If the original target is in the slice, this isteted. Otherwise, if the original target is notfie slice
and there is only one nearest descendent, therdiestes used as the new target. Finally, if tig-or
nal target is not in the slice and there is moa@ thne nearest descendent, the original targetieda
back to the slice. Recall from Section 2.3.1 tHahation with a sub-script denotes the BehavieeTr
(or BT control flow graph) it operates on, so ia trefinition target operates on the BT control flow
graphB andtarget operates on the sli&

" Blank
/\
B D
C F i F
A A G o °
...................... O ngmaIBehaVIorTree o

(Dotted lines indicate regions which will be reebtiue to the reversion Acand the new
reversion t).

Figure 20. Multiple Closest Descendents

DEFINITION 25. TARGET OF A REVERSION/REFERENCE NODE.
For a BT control flow grapB with a corresponding transition systéns (81, APy, A, .4, N1, — 1)
and a slic&sderived fronB with a corresponding transition syst@a= (85, AP,, %, £, No—),

50 Slicing Behavior Trees

the functiontarget(ny) returnsn,, wheredescSet nearestDedtarget(n,)) and

targek(ny), t#rgek(ny) € N,, or
wheren, = < the element oflescSet ifarge; (ny) ¢ N, and|descSet= 1, or
target(ny) otherwise.

* |n this case, the nodarget (n,) must be added to the slice as the parent of ddesninnear-
estDes(target (ny)).

Alternatively, in the last case a blank nodeldde inserted instead, but there is no advaritage
doing this. Although a blank node would not brimy &xtra dependencies to the slice, the original
target will not either. The jump node has the saamponent name, behavior name and type as its
target, so it has the same data, interference @sdage dependencies as its target. Thus, these de-
pendencies would have already been added to tieendtien the dependencies of the jump node were
explored. If the target node has a control deperyets descendents would also share the same
dependency transitively. By a similar reasonintheftarget node has a synchronisation dependency,
itis a conditional node, so the jump node woulttdesitively control dependent on it. Therefane, t
synchronising nodes would already be in the siimilarly, if the target node has termination de-
pendencies, these would equally apply to its delgrgn, since they are in the same thread. Again,
these dependencies would already be in the sicericlusion, there is no advantage in using &blan
node instead of the original target node. Curretitly original target is preferable because agptes
there is no mechanism in Behavior Trees for noolesvert to or reference a blank node.

Reducing the Number of Jump Nodes

Including all the jJump nodes into the slicéhis simplest approach. This approach is correct but
imprecise because not all of the loops are negedRaducing the number of loops could greatly
reduce the time taken for model checking the slice.

After the slice has been created, a node mawyemith multiple jump nodes as descendents with
no intervening behaviour, such as shown in FigareTBe Behavior Tree on the left is the original
tree, with the grey coloured nodes indicating thdas which are not in the slice set. Assume tleat th
target of both reversion is the same. The Behaviee on the right is its slice, after all reversion
have been added back in. The reversions have noenaethe immediate children of the second
node, whereas earlier there were several othersneldieh executed in between. In the slice, both
branches now lead directly to identical reversisnst does not matter which one is chosen. The key
observation is that if two or more of a node’sdtgh are jump nodes with the same target, both will
result in identical execution traces. Due to thidy one of the jump nodes needs to remain in the
slice.

The same principle can be extended to casagwlien though the intervening behaviour is also in
the slice, two or more jump nodes can be reaclzeithgisame sequence of nodes, thus producing the
same execution traces. If two jump nodes cannoédehed via the same sequence of nodes, both
must remain in the slice. The following examplestfrates this.

Example

Consider the slice Behavior Tree in Figure\®RenC|c] is reached, there are two possible jump
nodes which may execute. Both reach the same taoggion. However, they do not result in identi-
cal execution traces. The reversion on the lefbig executed after the nodgd] has executed. Thus,
that reversion can produce traces where the compBrfianges between the statend the state
alternately, while the reversion on the right carproduce such traces. In this case, both revession
are necessary in order to ensure that all thedraicie original model are preserved in the slice.

Creating the Slice 51

\% \%
%
—> PN
/\ N N
\4 \4
\% \%
N N
Original Behavior Tree (grey nodes indicate Skéeer adding all reversions.

nodes not needed in the slice).

Figure 31. Unnecessary Jump Nodes

A
[a]
N2
B
[b]
N
C
[c]
B A A
[d] [a]
A /AN

[a]

Figure 32. Reversions Producing Different Execution Traces

In order to decide which jump nodes should ianmethe slice, it is necessary to identify thesn
which result in identical execution traces. hetndm be two jump nodes. If both produce identical
execution traces, they must satisfy the followieguirements:

() bothnandm can only execute at the same steps in the saraevabte execution traces, i.e.
for every observable execution traceuch that -~ <n> is an execution trace,- <m>is
also an execution trace and vice versa,

and

(i) aftern executes, for every execution trace afiehe observable remainder of the trace is
identical to what would have occurredihad executed instead and vice versa, i.enif<
o is an execution trace, wherds an observable execution trace, thanx- ¢ is also an
execution trace and vice versa.

The second requirement is satisfied if both jumgleschave the same target, since they both lead to
the same subsequent behaviour. For the first rmeint, it must be determined whether both jump
nodes can only execute in the same traces. Thigiftoth jump nodes can be reached by the same

52 Slicing Behavior Trees

sequence of nodes in the slice. Therefore, theynawe the same closest ancestor in the slice. How-
ever, sharing the closest ancestor is not sufficceguarantee the first requirement. One jump node
may have additional control dependencies thattther @oes not have, thus restricting the traces in
which it can execute.

Fortunately it is not necessary to considecatlitrol dependencies from each jump node. What
matters is only whether or not there is a chaidepfendencies from the jump node to a node in the
slice set. Suppose that two jump nodasdmhave no transitive dependencies to a node inittee sl
set. Then, the nodes tiedndm depend on can execute at any time, regardless ofithent states of
nodes in the slice set. Therefore, it becomes adatgrministic choice as to whether or neindm
will execute in a particular trace. Both nodesadfectively equivalent to each other, since botly ma
or may not execute in every trace. The only exoeps if one of the jump nodes caeverexecute,
due to some dependency that is never satisfieth &sduation can be identified by searching the
dependency paths starting at the jump node, teifg@my nodes needed by the jump node that can-
not execute before it. An alternate solution isrity remove a jump nodeif there is another jump
nodemwhose dependencies are a strict subses aiependencies. This ensures that whemagan
executen can too, as is more restricted.

Comparing the entire chains of dependenciegatigg at each jump node is too computationally
expensive. A simpler solution is to compare the sfdhe dependency paths. If both paths stalt wit
the same node, the rest of the dependency pathsdentical. If one jump node has a dependency
that restricts the traces in which it can exedbteassociated dependency path must begin witr eith
a control, data or interference dependency. Acagrth the second requirement, both jump nodes
have the same target node. In that case, bothhauwstmatching component names, behaviour names
and types, so they are already known to shareithe data and interference dependencies. Therefore,
the only paths which need to be compared are thasbegin with a control dependency. If both have
matching control dependencies, they therefore haatehing dependency paths.

In fact, it is not necessary for both nodelsaee control dependencies to fanenodes; only to
have control dependencies to matching nodes. Sotbeontrolling nodes have the same component
and behaviour names, both will lead to the samertigncy paths. Figure 33 gives an example of
two jump nodes that both have control dependetaiggtchings?g? nodes. The only differences
would be any further control dependencies fromci&rollingnodes themselves to an ancestor.
However, in such a case, the jump node would bsitreely control dependent on the ancestor as
well. Therefore, to check whether two jump nodegehihe same dependencies, it is sufficient to
check that all of their transitive control depentlea match.

A
[a]
\/
B
[b]
C G
[c] 7g°?
D
7g? [d]
A A A A
[a] [a]

Figure 33. Example of two reversions with the same dependencies

Creating the Slice 53

Further reductions can be made by observirtgnthaodes in the system can influence an external
input node, so the component and message nantesedternal input node are irrelevant. Therefore,
if one jJump node has a control dependency to armattinput node, it is enough for the other jump
node to have a control dependencgng external input node, not necessarily a matchirgy on

This process of checking for matching depenigsris utilised for a functiosameGuardgiven in
Definition 26. The function takes three nodes gsi@entsn,, n, andn,. The node, is the closest
ancestor in the slice of the two jump nodgsindn,. First, the set of nodes whidhis transitively
control dependent on are found, excluding noddsehitham,. Out of these, if any of them are transi-
tively dependent on a node in the slice set, thénrequired to also have a control dependency to a
matching node. Additionally, i is transitively control dependent on an extemaiit noden, must
be too. The functiosameGuardseturns true if these conditions hold.

DEFINITION 26. CHECKING FOR SAME GUARDS.
Let Sp be the slice set. Letequiredny, n) ={n; | n; o n, andn; € desg(n)}.

Then, the functiosameGuard®,, n,, n) returns true iff¥ n; requiredn,, n)) such thatin, SP
wheren, >—d>mo -4 my -4 -4 m -4 nandV0 <j <k m ¢ requiredn,, n),

dn, € requiredny, n) such that either:
N =n, or
= matchingn;, n,) and
Vn; € requiredny, ny) such thatype(n)) = external inputd n, € requiredny, n)) such thatypgn;) =
external input
]

If two jump nodes have the same closest andedtee slice, the same target, are either battrre
sions or both reference nodes aatheGuardseturns true, then only one of them is necessethe
slice. This is given by Definition 27. The functieguiv,(n,, ny) returnstrue if the two nodes are
equivalent. The requirement that both must be séwes or both reference nodes is necessary due to
the difference in semantics between the two tygpesversion will terminate all the sub-threads\elo
the target, while a reference node will not.

In the definition, the closest ancestor is gilsg examining each leaf node of the slice (bedone
jump nodes have been inserted) and comparingail podes that are descendents of the leaf node in
the original model. The leaf node is the closestator in the slice for each of those jump nodes.
Using this method makes it easy to determine whethgarticular jump node can produce traces
which are different to other jump nodes. Note ih#he following definitioncanExe¢n) denotes that
the noden is able to execute in at least one trace, iig not the case that it caeverexecute.

DEFINITION 27. EQUIVALENT JUMP NODES.

For a transition syste® = ($;, APy, A, .4, N1,— 1) of a BT control flow graph and a transition
systemS = (S, AP, £, £, No—), where S= slich(B) for some formulap,

Vv n, € Ssuch thateaf(n),

vn,, ny € desg(ny), such thaflag(n,) =flag(n,) € {rev, ref} and canExe¢n,) andcanExe,),

if target(n,) = targets(n,) andsameGuard@y, ny, n), thenequivy(ny, ny).
Otherwise iftargek(n,) € desg(n) andtargek(n,) € desg(n) andsameGuards,, ny, n),
thenequivi(ny, ny). [

Example

Returning to the earlier example in Figure 32 réhersion on the left would not be compared with
the reversion on the right, because their closessiors in the slice are different. The ngjdéis the
last slice node before the reversion on the ldigena<[c] is the last slice node before the other

54 Slicing Behavior Trees

reversion. Thus, both reversions would be keptérstice, since they can produce different trates o
behaviour.

A common result of slicing is for a node to &éaeveral jump nodes as descendents that each cause
divergence (traces consisting entirely of stuttgsiteps). Since the purpose of slicing Behavioegre
is for verification, such divergent behaviour mostpreserved in the slice. The jump nodes in such
cases must therefore remain in the slice. Againséime principle can be applied. Locate two or more
jump nodes that result in identical observable etiec traces. As well as being identical in terrhs o
observable nodes, these traces must both havegentdrehaviour occurring at the same steps in each
trace. Divergence occurs when a loop operatesbniira stuttering portion of the tree. Therefore,
the targetm of a jump node must also be a descendenhisfclosest ancestor in the slice. This is
given by the last statement in Definition 27. § trgets of both jump nodes are descendentsiof the
closest ancestor in the slicg,and both have the same dependencies, then @bf tre jump nodes
iS necessary.

Example

Consider the Behavior Tree in Figure 34. Tlagedour reversion nodes below the node labelled N,
each numbered 1 to 4. The dotted arrows indicaggendach reversion’s target is. The white coloured
nodes are in the slice set. Reversions 1 to Zwa# the same closest ancestor in the slice, noOa N.
the other hand, the closest ancestor in the diB&wersion 4 is node M, so it cannot be compared
with Reversions 1 to 3. Reversion 4 should onlgdiapared with any other reversions below node
M. In this case, there is only one reversion, seeliRe@on 4 must remain in the slice. Out of the othe
three, all have targets that are descendentssaf &suming that they have matching control depend-
encies, only one of them needs to be in the slice.

|
4
4
N
<—

4 AR
o % \% 4 \
! > M
\ N ! V— 4 S

S A “ * A e

> . % % N

1 \\\ " ~ /l 4
2 3

Figure 34. Divergence Caused By Reversions

The following lemma demonstrates that if theiereversion or reference nag¢hat is equivalent
to another reversion or reference nogde¢henn, is able to execute in all the same traces asd
produce the same subsequent traces. This restiltne®that reversion or reference nodes that are
equivalent to another node are not required totleded into the slice.

Creating the Slice 55

LEMMA 2. PRESENCE OF JUMP NODES
For a doubly-labelled transition syst&w (53, AP, 4, .4, N, — ;) of a BT control flow graph and
a transition syster = (8, AP, %, 45, N,—), where S= inCQP(B) for some formulap,
Vn, € N1 such thatype(n,) =revorref, if 3n, € N, such thaequivy(n, ny), then
Vo, € tracegB), such that; = o, ~ <n,> -~ a3, Whereo, € trace¢B) ando; € tracegB),
do, etracegB) such that, = o5 ~ <n> - 06, Whereos € tracegB) andos < tracegB) and
Projy(o2) = pProjy(os) andproje(os) = projy(oe).

Proof.

Let S, be the slice set. By Definition 2¥,n, € N, such thatype(n,) = {rev, ref}, eithern, € ¥, or
dny e N, such that:

» the closest ancestor afin S!P N, is the same as the closest ancestoy 'me(P,

> targek(n,) =targei(ny) or targek(n) € desg(n,) andtargei(n,) € desg(n,)) and

> sameGuardsy, ny, ny).

Let o, € tracegB), whereo; =0, ~ <n;> - ga.
If target(n,) =targek(ny) thend os € tracegB), such that 1> - o € trace{B)
andproj(cz) = Projy(os)-
Otherwise, ittargeg(n;) € desg(n,) andtargek(ny) € desg(ny), then
o3 consists only of stuttering steps.
= dog € tracegB) such that 8,> - o¢ € tracegB)
targeg(n,) € desg(n,)
= 0g Consists only of stuttering steps.

= Proje(as) = projy(ae)-

Sincen, is the closest ancestor of battandn, such thah, SP the last observable nodedpisn,.
= dos e tracegB) such that the last observable nodesirs n,

= Proje(o2) = projy(os).

sameGuardsy, ny, ny),

= bothn, andn, have the same dependencies,

= 05 ~ <n> e tracegB), sinceo, -~ <n> e tracegB),

3.4.4 Re-forming the nodes into a tree

The final set of slice nodes is often a disjointdesub-trees, which must be re-formed into a syn-
tactically correct Behavior Tree. This situatiosuits from deleting irrelevant nodes. Some program
slicing algorithms instead replace irrelevant pangstatements wittkipstatements (statements that
do not perform any action). This is a convenierthme for maintaining the program structure. How-
ever, theses slicing approaches were designedd@urpose of debugging or understanding, not for
verification. If the irrelevant Behavior Tree nodesre replaced witkkipnodes, the final model used
for model checking would still have the same nundfgarogram counter variables as the original.
The skip nodes would have to be translated intsitians that do nothing except update the program

counters. This would therefore cause unnecesstgy states to be examined by the model checker.
Since the goal of slicing Behavior Trees is to pedihe model size as much as possible, it is more

desirable to completely remove the irrelevant ndidea the tree.

56 Slicing Behavior Trees

A node and its subtree becomes disjoint froenntiain tree if its parent node has been removed
from the tree. In some cases, this can be easiyved by joining the node to its nearest ancastor
the slice. However, this can become complicatddanching nodes are involved, especially if the
root nodes of the branches have also been remowéda branch originally split off into further
branches. For this reason, blank place-holder remesometimes necessary. These can be thought of
asskipnodes as above; however, instead of using theaptace all deleted nodes, they are only used
in certain cases in order to maintain the origbrahching structure of the tree.

The algorithm for re-forming the slice set iatproper Behavior Tree operates on the strucfure o
the tree only; none of the individual charactesrstf the nodes, such as their type or name, aesne
sary. The algorithm is thus best described usfog@ionT(n) which returns the slice sub-tree rooted
at a given nodd.(root(B)) describes the slice sub-tree which begins wighrdot node of the original
Behavior TreeB. Since the slice begins with the same root ndaestib-tree returned is the entire
slice tree. The notatiof(n) = (n, Ty, Ty, ..., Ty) describes the sub-tree with the root no@ed for

each sub-tre&, where 1> i > m, paren{root(T;)) =n. The process for re-forming the slice setinto a
tree is given by Definition 28 below.

DEFINITION 28. REFORMING TREE STRUCTURE.
For a doubly-labelled transition syst&w (S, AP, J, .4 N,—) of a BT control flow graph
and a slice se%, = nodes_slicg(B),

(n, T(childg(n, 0)), T(childg(n, 1)), ... ,T(childg(n, X)), ifne S,

T(n) = (blank T(childs (n, 0)), T(childg(n, 1)), ... ,T(childg(n, x)), ifne¢ S, andx>1,
T(childg(n, 0)), ifi ¢ §, andx = 1,
(), otheswei

wherex is the number of children ofin B, andblankdenotes a blank node.
[|

The process operates by following the struatfitie original Behavior Tree in a depth-first man
ner. Each node is either placed into the new tegtaced by a blank node or not included into the
new tree. In the latter case, its nearest desceimddse new tree becomes joined to its nearegsanc
tor. The details of this approach are as follohsnoden is in the slice, the sub-tree rooted af(n),
consists of joined to each of the sub-trees of its childremfithe original Behavior Tree. The sub-
trees of the children are in turn given by the fiorcT, son will not necessarily end up being joined
to its original children. Ifh is not in the sliceJ(n) depends on the number of childrehas in the
original Behavior Tree. If there is more than ohid; n must be replaced with a blank node in the
slice, in order to preserve the branching structarthis casel(n) consists of a blank node joined to
the sub-trees af's children, again each given by the functionf n has only one child, no node
needs to be added to the slica'afocation.T(n) is the same as the sub-tre@'sfchild. Finally, ifn
has no childrenf(n) is empty.

Using this process, the slice nodes will bgaltked back into a tree, with blank nodes plackdw
ever there are branches without a parent. Howatfter,the tree has been formed, there may be un-
necessary blank nodes present. A blank node itedrednenever a node is not in the slice but has
several children in the slice. This is necessapases where the blank node’s parent has other sib-
lings. Suppose that the other siblings executa akkernate choice, whereas the blank node’s emldr
execute concurrently, as shown in Figure 35. lndhse, an alternate choice must first be made be-
tween each of the other siblings and the blank nblden, if the blank node is chosen, its childiam ¢
then execute. If the blank node was not used, itldvoesult in mixed alternative and concurrent
branching on the same level. Thus, blank nodesamessary in such cases. However, using the above
algorithm, a blank node might be inserted even vifsgoarent has no other siblings. In such cases,
the blank node is unnecessary, as its childrersicaply be connected directly to the blank node’s
parent. During the initial pass, it is not posstilélentify the situation where a node origindid
siblings, but does not have any in the slice. Wiilsonly be apparent after the tree has been fully

Creating the Slice 57

formed. Therefore, a second pass is necessarpi@hmwuch unnecessary blank nodes are removed.
For each blank node, if it has no siblings, themiemoved and each of its children are joindtsto
parent. If a blank node has only one child or nitdaodn, the blank node is unnecessary, so is re-
moved. This is described in Definition 29.

/v\

Figure 35. Branching Involving a Blank Node.

DEFINITION 29. REMOVING EXTRA BLANK NODES.

For a transition systeB® = (S, AP, ., £ N,—) of a BT control flow graph
and a slic&s=T(root(B)),

Ty(n) = | T2(childs(n, 0)), f=1ork<2
(n, Ty(childg(n, 0)), Ty(childg(n, 1)), ... ,Tx(childg(n, X)), otherwise.

wherec = childNumg(pareng(n,)) andk = childNumg(n).
]

Finally, a third pass is needed to ensuredihtite edges are of the correct type. Since samden
which previously had several siblings might nowénanly one, their edge type must be changed to
sequential instead of alternate or concurrent. @@ely, some sequential nodes might have moved up
to become part of a group of siblings, so they most be changed to concurrent or alternate, to
match their siblings. This is described in Defmiti30 below. For each node in the slice, if itis t
only child of its parent, then its edge type isteetequential. Otherwise, its edge type is setatzh
the edge type of the parent’s original childrentéNtbat since all of the children must have magghin
edge types, it is sufficient to query only the etigee of one of the children.

DEFINITION 30. CHANGING EDGE TYPES.

For a transition syste® = (S, AP, .J, £ N,—) of a BT control flow graph

and a slices = T,(root(B)),

Vn, e Sandn, = parent(n,), if childNung(pareng(ny)) = 0, seedgeTypsg(n,, n,) =seq
otherwise setdgeTypeg(n,, ny) = edgeTypg(n,, childs(n, 0)).

Example.

Figure 36 shows an example of a slice thatlean re-formed into a tree. The Behavior Tree on
the left is the original tree, with grey boxes es@nting the nodes that will not be in the slidee T
Behavior Tree on the right is the final slice. Nibigt after the first phase, node A would haveaalbl
node its only child and nodes B and C will be algitdof the blank node. In the second phase, the

blank node is deemed unnecessary and removed. [

58 Slicing Behavior Trees

A

> B/\E

e

C
U
E
Figure 36. Re-forming a slice into a Behavior Tree.
Example.
In Figure 37, two blank place-holder nodeseessary because A has another child E. There is
one thread in which E executes, one with D andvatiethe B and C alternate choice. []

A
A
E BLAMNK E

O /\
BLAMK B
B C A

B (3

Figure 37. Re-forming a slice into a Behavior Tree using two place-holder nodes.

Thefor-oneandfor-all constructs are used to model that some behavppliea to one or all items
in a set. The sub-tree belovioa-all orfor-onenode usually contains at least one node refetwitige
items in the set, for instance to set all the iteovasparticular state. After slicing, howevergdlhese
nodes may have been removed, leaving only nodesldhaot refer to the items in the set (i.e. the
parameter of thfor-all / for-oneexpression). In previous work, (Yatapanage, e2@i.0), thdor-all
/ for-onenodes were removed in these cases. However, itmotialways be correct to do so, since
the user may have designed the model with the ép@tthat the descendents offibreall / for-one
node would be repeated. One possible solutioraisttamatically identify locations where tioe-all /
for-onenodemaybe unnecessary and then to ask the user to deleatber or not the node should be
retained in the slice. As a default, falf-all / for-onenodes are added to the slice.

Example.

In Figure 38, for each entry ticket purchased ol counter is updated. If ther-all / for-one
node was to be removed, the counter would incdyreairease only once. This type of situation is
impossible to determine automatically, as it reggitontextual knowledge of the system.

|| t:Tickets

\.

System
[count++]

Figure 38. Example with a for-al/node.

Slicing Algorithm 59

By following these steps, the slice set isgfarmed into a Behavior Tree. The transition system
corresponding to the slice tree is given by thetionnodes_sliceas given in the following defini-
tion.

DEFINITION 31. SLICE.

For a BT control flow grapl® and its corresponding transition systenthe functiorslice,(B) re-
turns the transition system of the slice createthfthe slice setodes_slicg(B), by using the con-
struction algorithmd; andT.. []

Each of the functions that operate on BT coffiival graphs and their nodes, suclcasponergh),
can be applied to the slice and its nodes as lvalfder to make it easier to reason about a Behavi
Tree and its corresponding slice, the thread ifiergtifor the slice are the same as for the orlgina
model. Therefore, if a thredds in the slice, there will be a thretid the original model as well, but
not necessarily vice versa.

3.5 Slicing Algorithm

The algorithm for computing a slice of a BTcamputationally inexpensive. The creation of the
dependence graph needs only to be performed on83 @and can be re-used for any temporal logic
formula. The slicing algorithm normally used fopgrams is a two-phase algorithm designed for
inter-procedural programs (Reps, et al., 1994). éi@x; since Behavior Trees do not have procedure
calls, a simpler one-phase slicing algorithm isisieht. In the following, the modules for ideniifig
the dependencies are described, followed by thoellegion of the slice.

From the definition of control dependency,dhéy nodes that can create control dependencies are
ones with two successors in the BT control flowptral hese are only guards, selections, synchroni-
sations, internal input events or external inpetgs. The algorithm for searching for control depen
encies is given below in pseudocode. The functi&ng two parameters: a nadand a nodéast-
Guard which is the closest controlling ancestor. lurso/ely explores each node in the BT (lines 5-
6). A mappingcontrolDepMagpis maintained from each node to the set of nibéesontrol depend-
ent on. TheontrolDepMapvariable is updated to store the control dependtnm n to lastGuard
(lines 1-2). In line 3, if the current nodes a selection, guard, synchronisation or inpenéumit in-
duces a control dependence on each of its desdsndpto the next controlling node. Therefore, line
4 setsn to belastGuard which is given as the second parameter whenuthibn is recursively
called for the children. The time complexity foistinethod is Qf), wheren is the number of nodes
in the Behavior Tree, since it explores each nodets/ once.

findControlD(Node n, Node lastGuard)

1 if (lastGuard != null) then
2 controlDepMap.store(n, lastGuard);

end if
3 if (type(n) == (selection OR BTguard OR input OR synch) then
4 lastGuard:=n;

end if
5 for each child c of ndo
6 findControlD(c, lastGuard);

next c

Data dependencies are calculated in two dt@ss,. all the guards, selections and state-re@isa
in the BT are identified in a single traversalref tree. In the psuedocode belgwardsis a mapping
from behavior names to the set of guard and sefeatbdes with that behavi@@Rsis a mapping
from behavior names to the set of state-realisaiiates with that behavior. The time complexity for
this step is Qf), wheren is the number of nodes in the Behavior Tree, sineeplores each node
exactly once.

60 Slicing Behavior Trees

identifyGuardsAndSRs(Node n)
create map guards, SRs;
if (type(n) == state realisation) then
currentSet = SRs.lookup(behav(n));
SRs.setAt(behav(n), currentSet U {n});

else if (type(n) == guard or selection) then
currentSet2 = guards.lookup(behav(n));

Noou b WNBE

guards.store(behav(n), currentSet2 U {n});
end if
for each child c of n do
9 identifyGuardsAndSRs(c);
next c

In the next step, each guard or selection reodentified as having a data dependency to each
state-realisation node that has the same behaaoue. The variabldataDepMaps a mapping
from guard and selection nodes to the set of statisations they are dependent on. For each
pair (behaviournodeLis} in the mappin@Rsthe set of guard and selection nodes with thesam
behaviour name are located (lines 2-3). For eademm the guard node list, it is first checked
thatn can be reached from each nodim nodeList(lines 4-7). For nodes in parallel threads, the
check always returns true. For nodes in the sareadhthe check returns true if there is a path
frommtonin the BT control flow graph. This check can beg@ened in O(1) time, by utilising
an ordering on node IDs that allows one to immetiiatetermine whether a node is a descendent
of another. The nodes that satisfy the check atedatb a new list (lines 8-9). FinallyataDep-
Mapis updated to contain the dependency fndmthe new list (line 10). For each guard (or se-
lection) node, every state realisation node irctireesponding list is explored once. Therefore,
the worst-case time complexity isf®)(wheren is the number of nodes in the Behavior Tree.
However, this case is impossible since each ggamaly dependent on the state realisations with
the same behaviour name. In most cases, therenljilbe a few state realisations and guards for
each behaviour name, so the complexity will noryniadl less than @j.

findDataD(Node n)
identifyGuardsAndSRs(n);
for each (behaviour, nodelist) [J SRs do
guardNodes = guards.lookup(behaviour);
for each n [guardNodes do
create new list nodelList2;
for each m [nodelist do
bool isReachable = checkIfReachable(m, n);
if isReachable then
nodelist2.add(m);
end if
next m
10 dataDepMap.store(n, nodelList2);
next n
next

OO NOOUL D WN PR

The algorithm for calculating message deperidsmperates in the same way as for data depend-
encies. The message nodes are first identificithelmext stage, the input nodes are matched to the
output nodes in the same way that the guards watehed to the state-realisations for the data de-
pendency function.

Synchronisation dependencies are very simpleh Bynchronising node is dependent on each of
the others. The algorithm simply records these nidgacies by exploring each synchronising group

Slicing Algorithm 61

once. Within each group, the nodes are accessedareach of their synchronising partners. As for
the previous case, the algorithm has a worst da®¢nd) time complexity, in the case where each
node in the tree is a synchronisation node. Howdéeemost Behavior Trees, there are only one or
two synchronising groups, each involving only twdloee nodes each, so the practical time com-
plexity would be far less.

The pseudocode below shows the function whattutates termination dependencies. It begins by
creating a mappingrminatingRootsfrom nodes to the node that can terminate théwa riiapping
will only contain the root nodes of branches tfzeit lbe terminated. The algorithm traverses each node
n of the tree. Ihis a thread kill, its target is mappeditm terminatingRootglines 3-4). Next, ifiis
a reversion, each child of the target that is nohrcestor oh is mapped tam in terminatingRoots
(lines 5-8). Finally, ifn is an alternative branching node, each of itérgjblis mapped to it (lines 9-
12). When the entire tree has been traversed peaobf nodest(r) in terminatingRootss traversed
(line 13). For each nodeeach of its descendents are termination-depeondent his is recorded in
another mappintermDepMap which maps nodes to the nodes they are termmdtpendent on
(lines 14-19). This function also has a worst-¢ase complexity of Of°), but again this represents
an unrealistic case. In most cases, there areadely nodes that cause termination dependencies in
the tree.

findTermDep(Node n)
1 create map terminatingRoots;
2 foreachnode ndo
3 if (flag(n) == threadKill) then
4 terminatingRoots.add(n.target, n);
end if
5 if (flag(n) == reversion) then
6 for each child c of n.target do
7 if (! nin c.desc()) then
8 terminatingRoots.add(c, n);
end if
next c
end if
9 if (edgeType(edge(n.parent, n)) == alt) then
10 for each child c of n.parent do
11 if (c I=n) then
12 terminatingRoots.add(c, n);
end if
next c
end if
next n
13 for each (t, r) in terminatingRoots do
14 for each d [J t.desc() do
15 list termNodes = termDepMap.lookup(d);
16 if (termNodes == null) then
17 create new list termNodes;
end if
18 termNodes.add(r);
19 termDepMap.store(d, termNodes);
next d
next

62 Slicing Behavior Trees

After all of the dependencies have been caled)dhe stored information can be re-used for all
slices from the Behavior Tree. The previous fumineed only be executed once per Behavior Tree.
For each new criterion set, the function givenetalculates the slice set. The function makestise
four sets of nodesisited tempSetsliceSetandcurrentSetThe first two are initialised to empty sets,
while sliceSetandcurrentSetre both initialised to contain the nodes in ttiteigon (lines 1-2). The
main loop of the algorithm operates untirrentSeno longer contains any nodes (line 3). For each
noden in currentSetit is not explored unless it is not in thisitedset. This prevents infinite cycles
from occurring due to cyclic dependencies, su¢hatermination dependencies between alternative
branching siblings. I has not been previously explored, it is addeti¢eisitedset (lines 4-6), to
prevent it from being explored again in the futidext, the nodes whiahis control-dependent on
are located (line 7). Each of these are addéshtpSe(lines 8-10). This is repeated for each of the
types of dependencies. FinallgmpSetontains all the nodes thats dependent on. These are all
added tasliceSe(line 13). When all the nodes aarrentSetave been explored, the set is emptied
and replaced with the nodestampSetwhich are the nodes that were discovered by erplohe
dependencies (lines 14-15). TheteatpSets also emptied. The while loop then continuesipjor-
ing each of the new nodes darrentSet This continues until no more new dependenciesbean
reached. The complexity of this algorithm isWp&ince no node is explored more than once, due to
thevisitedset.

calculateSlice()
1 initialise visited, tempSet to empty;
2 initialise sliceSet, currentSet to nodes in criterion;
3 while (currentSet.size > 0) do
4 for each n U currentSet do
5 if (! n O visited) then
6 visited.add(n);
7 depNodes = controlDepMap.lookup(n);
8 if (depNodes != null) then
9 for each m [J depNodes do
10 tempSet.add(m);
next m
end if
11 depNodes = dataDepMap.lookup(n);
12 ... (repeat 9 to 11 for each DepMap).
13 sliceSet.addNodes(tempSet);
end if
next n
14 currentSet = empty;
15 currentSet.addNodes(tempSet);
16 tempSet = empty;
loop

Proof of Correctness 63

3.6 Proof of Correctness

The purpose of this slicing approach is to &nlaloger models to be verified than would normally
be possible. An essential requirement is theref@rehe slice preserves the same set of propasties
the original model. In other words, a CTdproperty will be satisfied on the slice if andiilit is
satisfied on the original model. The user museassured that this requirement will be fulfilled fo
any slice, regardless of the property or the caigmodel. If this can be guaranteed, the slicebean
used to replace the original model. For this repspnoof of correctness of the approach is negessa
This section presents such a proof, based on tienraf bisimulation, which is a well-established
technique for computing the equivalence of twocstmes. For further details on bisimulation, réder
Section 2.2.5 on page 25. Recall from TheoremSeiction 2.2.5 that if two transition systems are
related by a branching bisimulation with expliditetgence, a CTLy property holds on one transi-
tion system if and only if it holds on the othenc& CTLy and LTLy are subsets of CTl, this also
guarantees the preservation of Gland LTLy formulas. In this section, it will be demonstratteat
a branching bisimulation with explicit divergen@nde constructed between a Behavior Tree model
and its slice. This will thereby show that a sliteserves the same CTLformulas as the original
Behavior Tree.

In order to construct such a relation, it isessary to show that every initial state in thgioal
model can be matched by an initial state in tlee sis shown by Lemma 3 below. This is not a one-
to-one mapping, since several of the initial stat¢ke original model may be matched to the same
initial state in the slice.

LEMMA 3. EQUIVALENCE OF INITIAL STATES
For a transition system = (S, APy, 4, .4, N1,— 1) of a BT control flow graph and a transition
systemS = (5, AP,, %, £, No—), whereS= SliCQP(B), VseJy, At e, such thatﬁq,(s) =

Lp(t).

Proof.

Vn, € init(B) such thabbsy(ny), i e Cy, by Definition 22.
= m € init(9), by Definition 23.

= Vs e Jy, 3t e I, such tharqp(s) = 4p(ti)-
O

The following definition describes the constroictof a relation,#, between the original model and
a slice. The initial states are related by findingatching initial state in the slice for eachiahstate
in the original model. Subsequent states are thated as follows. Letandt be two states in the
relation such that a nodecan execute in stageleading to the stag If the node is in the slice and
can be executed in statas well, then both subsequent states are added telation. Note that in
this caser may be either stuttering or observable.iff not present in the slice, theis said to relate
tot.

DEFINITION 32. RELATION 2
LetB= (81, AP, /1, .4, NV1,— 1) be atransition system corresponding to a BTrobflow graph

andS= (85, AP, £, 5, N, —5) be a transition system such tBatincqp(B) for some formulap.

A relation% =N X N5 can be constructed as follows:
In the following, lets, S, S, S, ... range oves; andt, t, to, ty, ... range oves>.

Vs e Jy, findt € 7, such thatfp(s) = £(t). (A statet; must exist according to Lemma 3).
Let each, t) € .

64 Slicing Behavior Trees

Then,% can be constructed inductively as followss e §; andt € S, if s% t, then:
1) if 4s such thats N, sandne N, and if 3t such that v et (s, t) € % and
2) if 38 suchthas '~ s andne Ay, let €, 1) € &y
]
It now remains to be shown that the relati®rs a branching bisimulation with explicit diver-
gence. In order to shown this, an auxiliary resuttecessary: if a state is related to anothehédy t

relation, then the states have identical labellings wisipegt to the variables in the criterion. This
result arises from the definition g8, as shown by the following lemma.

LEMMA 4. RELATIONSHIP BETWEEN STATES AND 2.

For a transition syste® = (51, APy, 4, .4, N1,— 1) of a BT control flow graph and a transition
systemS= (8, AP, %, £, No— 5), whereS=slicey(B), s Jpt = Ly(s) = Lo(1).

Proof.

(By induction).

Base Casese 4 andt € % ands j&p t.

= Ly(9) = L(t), by Definition 32.

Induction Step:
Assumption: For somge S; andt € 5, s &, t = Ly(s) = L(1).

Required to showv's, s € S; such thas — s and Vt, t' € S, such that — t’, ands% t,
(1) SF&y t = Ly(s) = L(t) and
(2) s’%t :>4p(s’) =£(P(t).

Case (1):

STy U
—s - gandt > t’, for some node, by Definition 32, point (1).

= Ly(S) = Ly(s) @ updategn) and
Ly(t) = Ly(t) @ updategn).

Lp(9) = Ly(1), by assumption.

= Ly(s) = L(1).

Case (2):

S o t

—s -~ gandn ¢ N, by Definition 32, point (2).

= — 0bgp(n), by Definition 23.

= L(9) = £Ly(9).

Lp(9) = Ly(1), by assumption.

= Ly(S) = L(1).

Proof of Correctness 65

One of the requirements for branching bisimatatvith explicit divergence is for each sys-
tem to be able to match any observable steps matteetother, possibly preceded by stuttering
steps. It is therefore necessary to show that eMesgrvable step made in the original model
can be matched by the slice. This is demonstratéldebfollowing lemma, Lemma 5. Since the
slice does not have any nodes that are not inrigaal model, the stuttering requirement is not
necessary. The proof is shown by induction ovedéffendency paths starting at a nnge
which is the step made by the original system. @dse case is wheng has no dependencies.
The induction step assumes that Lemma 5 holdsoime node, such than, depends on,,
and thus proves that Lemma 5 holdsripas well. Both cases are shown by contradictiois. It
assumed that, can execute in the original model but not in tiheesFigure 39 illustrates the
various cases which arise from this.

Base Case
The control flow has not reachag The control flow has reachegatt
att but it has as. butn, has a guard that evaluates tp
falseatt andtrue ats.

Casel Case?2
A conditional A reversion or
ancestor is unable reference node
to execute before executed before
but can beforas. but not before:.

Casela Case1lb

Induction Step

/\

The control flow has not reachag The control flow has reachegatt
att but it has as. butn, has a guard that evaluates tp
falseatt andtrue ats.
Casel Case?2
A conditional A reversion or There is a node There is a nods,
ancestor is una- reference node n, that causes that causes,’s
ble to execute executed before n's guard to be guard to bdalse
beforet but can s but not before true, which which always
befores. t. executes before executes before
Casela Case1b but not before. but not befores.
Case2a Case2b

Figure 39. Cases where n, executes at sbut not at

66 Slicing Behavior Trees

LEMMA 5. ORIGINAL STEP MATCHES SLICE STEP

For a transition syste® = (51, APy, 4, .4, N1,— 1) of a BT control flow graph and a transition
systenS= (S5, AR, %, 5, No—), whereS= inch(B),

Vse 8, te S such thas £t, if s L s andn, € 45, thendt, t” € & such that LS t,

sj?(Pt” and s’j?q)t’.

Proof.
By induction.

In the following, lets, S, S, S, ... range oves; andt, t', to, ty, ... range oves>.

Base CaseThere is nay, such thah, -4 ny.
By contradiction, assume trfa% tandds |s Ny s andn, € 45,
butAt |t % t.

Case (1):dme threads(n,) such thah, € ready,(s) butn, ¢ ready(t).
Case (1a): 9 n, € ancegn,) such thatonditiona(n,) and

Vo, € preTracess), n, € a1, butVo, € preTraceft), n, ¢ o».

S Fp t = Ly(9) = Ly(t), by Lemma 4.
= — 0bgy(Na).
conditional(n,) andn, € ancegn,)

d
=N, < n,, by Lemma 1,
which contradicts the base case assumption.

Case (1b): 3n, € N; such thaty, ¢ N, andtypgn,) € {rev, ref} andtargein,) €
anceg(n,).
= dny e N such thaequiyy(n,, ny), by Lemma 2.
= Vo, e preTracefl), n, € oy,

= ny € readyy(t),
which contradicts the assumption of Case (1).

Case (2):3g e guardgny) such thag ¢ £,(t) butg € £(9).
= guardny) # {},
= conditiona(n,),

d
= dnysuch thaty, >— n,
which contradicts the base case assumption.

InductionAssumptionRequirement 1a holds for some naoglevheren, LY Ny,
whered € {cd, dd, id, md sd, td}.

InductionStep Required to show that Requirement 1a holdsyfor

By contradiction, assume tl”sa% tandds |s LY s andn, € 45,

n
butAt |t — t.

Proof of Correctness

67

Case (1):d me threadg(n,) such thah, e ready,(s) butn, ¢ ready,(t).

Case (1a):

Case (1b):

dn, € ancegn,) such thatonditiona(n,) and

Vo, e preTracess), n, € 01, butVo, € preTracet), n, ¢ o».

S Fp t = Ly(9) = Ly(t), by Lemma 4.

= — 0bgy(Na).

conditional(n,) andn, € ancegn,)

>N, ﬂnx by Lemma 1,

= n, € A5, by Definition 23.

= Lemma 5 holds fon,, by the induction assumption.
Therefore, sinc& o, € preTracess), N, € oy,

= Vo, e preTraceft), n, ¢ oo,
which contradicts the assumption of Case la.

3dn, € N; such thah, ¢ N, andtypdn,) € {rey, ref} andtarge(n) €
anceg(n,).

= dny e N such thaequiyy(n,, ny), by Lemma 2.
= Vo, e preTracefl), n, € oy,

= Ny € ready(t),
which contradicts the assumption of Case (1).

Case (2):3g € guardgn,) such thag ¢ £y(t) butg € .£(9).
Letg = (var, value).
Case (2a):dn, |n, € N, where Yar, valug) € updategn,) and

Vo, € preTracess), n e o1, butVo,e preTraceft), n, ¢ o.

If var e componentgthen:
var € DEF(n,), by Definition 14.

var € RERn,), by Definition 15.

dd/id
= n, > n,, by Definition 17 and Definition 18.

= ny € A5, by Definition 23.
= Lemma 5 holds fon,, by the induction assumption.
Therefore, sinc& o, € preTracess), n, € oy,

= Vo, e preTraceft), n, ¢ o,
which contradicts the assumption of Case 2a.

If var e messagethen:
type(n,) = intOut andbehaviofn,) = var.
>n, ,md n,, by Definition 19.
= ny € A5, by Definition 23.

68 Slicing Behavior Trees

= Lemma 5 holds fon,, by the induction assumption.
Therefore, sinc& o, € preTracess), n, € oy,

= Vo, e preTraceft), n, ¢ o,
which contradicts the assumption of Case 2a.

If var e synchLabelsthen:
flag(ny) = synchandflag(n,) = synchandmatchingn,, n)
= ny .4 ny, by Definition 20.
= ny € A5, by Definition 23.
= Lemma 5 holds fon,, by the induction assumption.
Therefore, sinc&/ o, € preTracess), n, € oy,

= Vo, e preTraceft), n, ¢ o,
which contradicts the assumption of Case 2a.

Case (2b):dny |n, € 45, where Yar, value) € updategn,) for somevalug =
valug andV o, € preTracefl), n, € o,, butVo, € preTracess),
ny ¢ o;.
= 3t, t such that, % ¢’
= Js such that %, { butAs’ such thats My S’
= (s,) ¢ A, by Definition 32,
=>(st) ¢ f&p by Definition 32,
which contradicts the assumption.

O
LEMMA 6. SLICE STEP MATCHES ORIGINAL STEP

For a transition syste® = (51, APy, A4, .4, N1,— 1) of a BT control flow graph and a transition
systenS= (83, AP, /%, 5, N,—), whereS= slice(P(B),

Vse S, te S such thaSjZ(P t,if t % ¢ and n, € A5 thends, s’ € S such that

s—'g Ky g Fp tands 2 t.

Proof.
By induction.
In the following, lets, S, &, Sy, ... range oves; andt, t', to, ty, ... range oves..

Case (1):dn, € N, such thah, ¢ N,, wheren, € anceg(n,) andconditiona(n,)
>N, >3d: n,, by Definition 16,
= ny € A5, by Definition 23,
which contradicts the assumption.

Case (2)3dn, e N1 such thah, ¢ N>,
wheretypgn,) = synchandtypgn,) = synchandmatchingn,, ny).
sd o
= n, >— n,, by Definition 16,

Proof of Correctness 69

= ny € A5, by Definition 23,
which contradicts the assumption.

THEOREM 2. RELATIONSHIP BETWEEN SLICE AND ORIGINAL
For a transition syste@icorresponding to a BT control flow graph, fortedinsition systemSsuch

thatslicey(B) = Sfor some formulap, Sis divergent-sensitive branching bisimilaiBpo
ie. B2 S

Proof.
LetB = (53, AP, A, .4, N1,— 1) andS = (5, AP, £, .5, N,—) . In the following, lets, S,

S S, ... Fange oves; andt, t', to, t5, ... range oves..

Let %, be a relation constructed according to Defini@n It remains to be shown th#tis a
divergent-sensitive branching bisimulation.

For %, to be a divergent-sensitive branching bisimutati®, must satisfy all of the following

properties.V's, t such thas %, t:

(la)if s n s, for somen € ¥, then eithes -~ s ands %, t or

3t t" such thatt "t —> t' SAyt and s Zyt.

(1b) if t n t', for somen € A, then eithet -~ t" ands %, t' or
3s, s” such thats —~ " s" N S, " Fytands Zy t.

(2a) if there exists an infinite path fragment-> s > s > ...,
there exists an infinite path fragment-~t, -~ t; >, such thab% S
for somek > 0.

(2b) if there exists an infinite path fragmeént> ty - t; > ...,
there exists an infinite path fragment--» s > s --->, such thad;o% t,
for somek > 0.

Requirement la: if s ALY s, for somen € N3, then eithes > S ands’% tor

* n
3t, t” such thatt >t — t, siépt” and s jépt’.

If n, e A5,
= Jt', t" € S, such that ALY t', s£t" and s’j?(P t', by Lemma 5,
as required.

Otherwise, ifn, ¢ A5,
= — obgy(ny ands’ % t, by Definition 32,

70 Slicing Behavior Trees

= s> sands Zt
as required.

Requirement 1b: if t ﬂx» t', then eithett ----> t’ ands% t' or
3¢, s" such thats - " §” ALY S, t £y s ands Ay t.
nX)
t—1t
=>neM

= 3¢, " € S such thas " g" LY s, s’ % t ands’% t, by Lemma 5,

as required.

Requirement 2a:

Vs, t such thas% t, if there exists an infinite path fragment--» s > s > ...,

there exists an infinite path fragment--~ty -~ t; >, such that .ﬁp S, for somek = 0.

Letp; =<s ap S a1, St .. >, Wherevi > 0,—- obsp(a)

Letr = {n.|3i = 0 wheren, = a andtypgn;) € {rev, ref}}

r = { }, since the path is infinite.

Vner, eithern, € 45 or In, € 5 such thaequivy(n, ny), by Lemma 2.

= Vnyer, if sy, Sna € p1 Such thats, LY Sty

then3t, t.; € 45 such thatt, —% t.; ort; —% .,

= dpy = <t by, to, by, t; ... >, whereVi > 0, - obsq)(bi) and for somé& > 0, by = a,
=1 % S, for somek = 0.

Requirement 2b:
Vs, t such thasﬂp t, if there exists an infinite path fragment--» ty > t; > ..

there exists an infinite path fragment--» 5 > s >, such thatto% t, for somek = 0.

Proof by contradiction. Assume for every path frgriere is an observable node.
Letpz = <t’ b(), to, b]_, t...>

Ny S M

=>Vi=0,bes

= Vp, e rungs), such thap, = <s ao, S, a1, S; ... > where for some > 0, Vi where 0< i <m,
dx such thag = b,,
Sm n Smr1 andobgp(n)

= ne 5, by Definition 23,

= EIJ > 0 such thapg = <t’ bo, 1o, bl,] ...,tj, n, tj+1>,
which is not an infinite stuttering path,
which contradicts the assumption.

Proof of Correctness 71

The proof confirms that the dependencies ptedénthis chapter have been defined correctly and
that no additional nodes are necessary in ordaretserve CTL¥ properties.

This chapter presented the concepts of sliofri@ehavior Tree models. The definitions for the
different dependency types were given, as wellggithms for computing the dependencies and re-
forming the slice into a syntactically correct BeiloaTree. The slice was shown to preserve the same
CTL* x properties as the original, using divergence-seadiranching bisimulation. The following
chapter introduces a method for further reduciegsibe of the slice.

72

Slicing Behavior Trees

INFEASIBLE PATHS

As discussed in Section 2.2.3, interferencedégnce can lead to imprecise slices due tofigint
sitivity. Krinke (1998) developed the notion ofeladed withesses to solve this problem. Whenever a
node is reached via an interference edge, it isamfded to the slice if it forms a valid threadetd w
ness with the other nodes collected so far aloaigdbpendency path. However, the slices produced
may still be imprecise, as will be shown in secdio®. In Krinke’s method, when a node is to be
added to the slice due to an interference depeggdeérgfirst checked whether the node’s dependen-
cy path forms a threaded witness. If it does hatjiode is not included in the slice. Although this
correct, it does not prevent other nodes whosedspgndency is to the discarded node, from being
added to the slice. Since those other nodes catieiecute without the discarded node, they could
be removed from the slice as well, producing a lemalice. Section 4.2 presents a new procedure,
which considers the entire dependency path instiesidgle nodes, thereby removing more unneces-
sary nodes from the slice. If a sequence of nodes dot form a threaded witness, then none of the
nodes are included in the slice.

4.1 Threaded Witnesses for Behavior Trees

Dependencies which cross thread boundaries,aaittterference and message dependency, are
intransitive. This can lead to imprecise slicesalbse the normal slicing algorithm assumes that all
dependencies are transitive. Although the resudticg will be correct, it is imprecise, which mean
there may be unnecessary nodes. Since the séitik ¢gerrect, as shown by the proof in Section 3.6
the unnecessary nodes will not cause the slicetiupe a different verification result than theyori
nal. However, by removing these unnecessary ndkdegesulting slice may be smaller. Krinke
(1998) proposed the notion of threaded witnessiggiify such nodes. In this section, the conoépt
threaded witnesses will be adapted for Behavioeg.re

4.1.1 Threaded Witnesses

The following definitions have been adapteddehavior Trees from the original definitions given
by Krinke (2003). As described in Section 2.2.3nKe and Nanda and Ramesh (2000, 2006) both
defined versions of slicing suitable for inter-pgdaral concurrent programs. Since Behavior Trees do
not have procedure calls, the following definitidvase been adapted from Krinke’s approach for
slicing intra-procedural concurrent programs, whises threaded witnesses. The idea behind the
threaded witness approach is to identify nodesténnot execute before a criterion node and so
cannot influence the criterion node. If a nogés in the criterion and is transitively dependamta
noden,, the node, is normally included into the slice. Howevemijfis known to be unable to exe-
cute befora, since there is no feasible path between thettvawe is no need to include it. This
situation occurs if either the nodes are in alt&radranches amn, is a descendent of and there is
no way of reaching, via a reversion or reference node.

74 Infeasible Paths

The notion ofhreaded witnesis defined in Definition 34. A threaded withessisequence of
nodes in which for every noag for each of its predecessaoysn the sequence, eithasis reachable
fromn, or they execute in parallel. A nodgs reachable from anothe, if it is possible to execute
n, and them, afterwards. The definition ofachables given in Definition 33. It is not sufficientifo
there to merely be a trace framto n, in the control flow graph, since traces in confimlv graphs
terminate at reversions and reference nodes ewaglttthe control flow is simply diverted by these
nodes. Therefore, the definition includes the filggithatn, can be reached fromvia one or more
reversions or reference nodes. In the followlagt(c) returns the last node aficst(o) returns the

first node of a sequence

DEFINITION 33. REACHABLE NODES
For two nodes, n, in a BT control flow grapiB, reachablén,, ny) iff
Jdo etracegB) such that = <my, My, ... ,mc>, wheram, = n, andmc=n, and for some¢ > 0,0 can
be divided intg sub-sequences, o, ...,0; such that for every;, where 1< i <j, typglast(o))) €
{rev, ref} andfirst(oi.1) =targeg(last(ay)).

[

DEFINITION 34. THREADED WITNESS
LetG be a dependency graph derived from a BT contred §raphB. Let € pathgG) such thatr =
<nNg, Ny, ..., >. Then, is athreaded witnesslenotedw(r) iff:
(adapted fronKrinke, 1998))
VO<i<k V0<j<i, either:

= threadn) # threadn;), or

= reachablén, n) in B.

]

The slice is constructed by collecting all logles encountered via a backwards search of the de-
pendency graph, starting at the criterion nodesefse. However, this time, if a path in the dapen
ency graph to a node is not a threaded witnesgathe is not added to the slice. This is desciitbed
Definition 35. Note that termination dependency ngsignored at this stage, as many termination
dependencies do not result in threaded withessesdstill legitimate dependencies. For example,
the termination dependence between nodes in ditegtmanches would result in dependency paths
that are not threaded witnesses since there isasible path between the nodes. For this reason,
termination dependencies are collected at a ltgef the slicing process, after the phase where
threaded witnesses are used to remove infeasipndencies.

DEFINITION 35. SLICING USING THREADED WITNESSES
A slice set containing only nodes on threaded wgasnodes_T\)(B), of a BT control flow grapB

using a criteriorCy, and a dependency grafhis defined as:
nodes_TW={n; | 3n. € C, anddm € path{G) wherer = <nj, ...,nc > andtw(m)}.

Example.

Consider the Behavior Tree in Figure 40. Assthraeslicing criterion is€}, so the nod€[c] is a
criterion node. It is control dependentBi?, which is in turn data dependentBhy] in the parallel
thread. This is in turn control dependentt®d?, which is data dependent Dfd]. The chain of
dependencies can be seen in Figure 41. The ndianadgggorithm would include all of these nodes
in the slice. Howeven[d] andC[c] are in alternative branches and there are noseves; so there is

Threaded Witnesses for Behavior Trees 75

no path fronD[d] to C[c]. The dependency chain does not form a threadeasgt Therefor@®[d]
cannot influenc€|c] and should be left out of the slice.

A
[a]
F 9Dﬁ
[f] j
A B
[bl
B E
?b 7 [el
C D
[c] [d1

Figure 40. Example Behavior Tree.

i S
¢ A\

Figure 41. Dependence Graph for the Behavior Tree in Figure 40.

4.1.2 Nested Threads

As explained previously in Section 2.2.3, Naadd Ramesh (2000, 2006) proposed an improve-
ment to Krinke’s algorithm in order to handle nedtereads more precisely. This problem does not
arise for Behavior Tree slicing, because of thiedéhce in how threads are defined. As demonstrated
by the example in Figure 8 on page 21, in NandaRardesh’s Control Flow Graphs, a thread is
considered to start when the control flow brandhiesthe new path and ends when the control flow
converges back to the parent thread. On the otiret, lthreads in Behavior Trees are considered to
start from the root and stretch all the way tcedi levde, as demonstrated by Figure 42, which shows
the boundaries of two threads. By this definitmmode may belong to more than one thread. In the
figure, the top three nodes are common to bottatseThis definition prevents the nested threads

76 Infeasible Paths

problem from occurring because both the parenthitdithreads are considered as one single thread.
The style of Control Flow Graphs used by NandaRachesh cannot be used for Behavior Trees
since threads in Behavior Trees do not always halistinct end point.

T TN
Pl |
Ay
P I}
i |
I/ p/‘x/
|
| v | v
,' .f
| \V4 1| V
N —_ // -,

Figure 42. Threads in Behavior Trees

As explained in Section 2.2.3, a second imgmzent was suggested by Nanda and Ramesh (2006),
for creating more precise slices in the presenoestied loops. The problem arises when a nigle
found to be transitively dependent on another moeeen though the variable update performexd at
will always be overridden by another nggj@n ancestor of. Again, this problem does not apply to
Behavior Trees. Threads in Behavior Trees opetditedoncurrently and the order in which the
nodes in parallel threads interleave is not fiXxdgbrefore, this issue does not arise because Hsé po
bility that nodem may executafter nodep cannot be ruled out.

4.2 More Precise Slices

The threaded witness approach described préwous section can still lead to imprecise slites
this section another approach is presented thaméstthe concept of threaded withesses to remove
further nodes from the slice. The main differersctinat this approach considers the entire maximal
path before deciding whether or not to include @enanstead of only the path up to the node.

Suppose that a criterion node is transitivelgehdent on another, Now, suppose that the path
from the criterion node todoes not form a threaded witness. According teptheious approach,
will not be included in the slice. However, theraynbe other nodes on the dependency path which
also cannot influence the criterion node, sincg Hre solely dependent onlf it is known thatn
cannot execute before the criterion node, thes atbdes cannot execute either. The threaded wit-
ness approach cannot identify such nodes, bedaggpath up to these nodimesform a threaded
witness.

This situation occurs because each node isdayes separately to determine if it should beudcl
ed in the slice. There is no way of identifying tase where the path up to a given node may form a
valid threaded witness despite the fact that teeakthe path does not. In this section, a differe
approach is presented that considers entire depeygaths instead of single nodes at a time.

Example.

Consider again the Behavior Tree in Figure 40 encbirresponding dependency graph in Figure 41.
The nodeD[d] was left out of the slice since the path up to#s not form a threaded witness. The
paths up to each of the other nodes form threaitadsges, so these nodes were all added to the slic
However, all the other nodes on the path also danfiwenceC[c], due to their dependencyfd].

More Precise Slices 77

4.2.1 Infeasible Paths

The set of maximal paths in the dependencyhgeaging at a given node is given by the function
depPathsas described in Definition 36. In other wowispPath@) returns the set of paths starting at
noden and either terminating at a node with no incondidges (i.e. no dependencies) or containing a
cycle. This is accomplished in the definition gtstg that if the first node on the patts, is depend-
ent on anothemy, then the path must contain a cycle,manust be on the path.The resulting set of
paths contain all the nodes that the specified i®dependent on.

DEFINITION 36. DEPENDENCY PATHS
For a dependency graghand a node,

depPathf) = { ™ € path{G) |7 = <my, my, ...,m, N>, where ifdm such thatm -4 My
thenme m }.
]

The original definition of a slice can be reformathusinglepPathsas given in Definition 37. Note
that if a criterion node. has no dependenciekepPathén,) would return a single path containing
only n..

DEFINITION 37. SLICING BEHAVIOR TREES
A slice senodes_slicg(B) of a BT control flow grapB, with respect to a formuig with a criterion
Co. is defined as:
nodes_slicg(B) = {n« | 3n. € Cy, wheredz € depPathén) andn, € x}.
[]

A path is known asfeasiblef it is a member oflepPathgn) for somen. € C, and does not form

a threaded witness, as stated in Definition 38ath s termedeasibleiff it is not infeasible. If such a
path is discovered, thetoneof the nodes on that path are added to the dligegithat traversal of
the graph. This does not, however, prevent nocdgsth able to execute from being included in the
slice. Recall that a node may belong to more timanpath in the dependency graph. If a node on an
infeasible path is still able to execute as it &lslongs to a feasible path, then it will be ineldich the
slice when the other path is explored on a futaeetsal of the graph.

DEFINITION 38. INFEASIBLE PATHS

For a nodee C, for a pathr € depPath@n), z is known asnfeasiblewith respect taiff it is not a
threaded witnes3.he functioninfPath,(z) returns true iffr is infeasible with respect to

[|
Example.
Returning to the example in Figure d@pPath&C[c]) would return the entire path shown in Figure
41. Due to the conflict betwe®ifd] andC|c], the path is not a threaded witness. Therefaseintea-
sible and none of the nodes will be added to the.sl

If all the dependency paths from a criteriodeyn,, that contain a particular nodhg, are infeasi-
ble, them,is designated as infeasible with respect to tiberiom node as given in Definition 39. This
means the node cannot influence the criterion rblae definition also labels nodes which have no
dependency path to the criterion node as infeadibis is appropriate, since such nodes will neeha
any influence over the criterion node.

78 Infeasible Paths

DEFINITION 39. INFEASIBLE NODES
For a nodey, and a criterion node. € C(p, the functioninf(n,, n.) returns true iffV T € depPathé,)
such thanh, € &, infPath(m).

[}

The definitions presented so far are usefuldfentifying nodes which are unable to influencae th
criterion node because all of the associated depeygaths are infeasible. As well as this, thexe a
cases where a node cannot influence the critende Bven though it is on a feasible dependency
path. These cases involve conditional nodes anchsynisation nodes. Assume there is a criterion
noden, which is control dependent on a conditional nagléf the conditional node is found to be
infeasiblen, can never execute, regardless of whether or hasibther dependencies which lead to
valid paths. A similar situation occurs for synafisation nodes, because a node cannot execute until
all of its synchronising nodes are ready to exeasitgell. The control and synchronisation dependen-
cy types are effectively stronger than other depeaigs, since the dependent nepiiresthe other
in order to execute, whereas for other dependeribeslependent node may still be able to execute
without it. For example, a guard node may be abéxéecute even if the corresponding state realisa-
tion is infeasible, if there is another state szdlon performing the same action. For this reason,
control and synchronisation dependencies must bdléd differently than the other dependency
types. Otherwise, in the above situation, if thedittonal nodeny was not added to the slice as it is
infeasible, the criterion nodg will be able to execute unconditionally in thecslidespite being
restricted by, in the original model. This can obviously leadntany traces in the slice which are
impossible in the original model.

The solution to this problem is to label nodsstrongly infeasibléf they are synchronisation-
dependent or transitively control-dependent omé&easible node. Definition 40 gives the formal
definition of strong infeasibility.

DEFINITION 40. STRONG INFEASIBILITY

For a nodey, and a criterion node, € C(p, the functiorstronglnfn,,n,) returns true ifd n, suchthat

nacgr—/sf]lnX and(inf(n,, nc) or stronginf{n,, ne)).

The infeasibility due to conditional nodesl&dransitive. If a nodeis termed strongly infeasible,
then any nodes which are control dependemtane also strongly infeasible, since they cannet ex
cute withoumn either. Since control dependence occurs betweenditional node and its descend-
ents, the result is that all the descendentstwbagly infeasible node will be labelled strongijea-
sible. The descendents of a synch infeasible ndtalMbe labelled strongly infeasible, due toithe
control dependence to the synchronisation node.

The final method for creating the slice is swarised in Definition 41. As in the original defioib
of slicing, the slice is the set of nodes thatlsameached via a backwards search starting from the
criterion node. The previous definition of slicinging threaded witnesses ignores individual nodes
that cannot be reached by a valid path from thtergshn node. This definition instead ignoiadk
nodes along maximal paths where the path is moeaded witness. A node is only added to the slice
if it is on a dependency path from a criterion nathéch is not infeasible and if the node is notdien
tional infeasible or synchronisation infeasibleharigéspect to the criterion node. The extra require-
ments about strong infeasibility ensure that ef/grere is a valid dependency path, the node will n
be added if it is strongly infeasible.

DEFINITION 41. NODES_INF
For a slices, = <N,E, start, end> produced from a BT control flow gra@ for a formulap, the slice

set produced by removing infeasible patteles_inf(G), is defined as:

More Precise Slices 79

nodes_inf(Gy) = {nx€ N |—inf(ny, nc), for somen € Cy, and—strongIn{ny, n;)} U {nc |n. € Cy and
sizddepPathé)) = 0}.
]

DEFINITION 42. SLICE_INF
Let B be a transition system corresponding to a BT obfitw graphG andSbe a transition system

such thaS = slicey(B) for some formulap. Then, the functioslice_inf,(S returns the transition
system of the slice created from the slicenseles_inf(G).

After finding all the nodes to add to the slizeriterion node may itself not have been adodukt
slice. There are two reasons why this can ocdimeedll of its dependencies were on infeasiblegpat
or it does not have any dependencies. In the ledise, the criterion node would not be in the slice
because no valid dependency path was found frofii. is the reason for the second part of the
definition of a slice, i.e.§ | nc € C andsiz§depPathg)) = 0}. Any criterion nodes which never
had any dependencies must be added to the sliveuwany further considerations. This implies that
the criterion node is always executable.

The other possibility is that the criterion mdths dependencies, all of which lie on infeagiaths.
This means that the criterion node is known torbveachable. Since the criterion is a temporal logic
theorem, there would normally be several criteriodes, so the remaining criterion nodes are used
for creating the slice. If it is the only criterionde representing that component, then that paréo
formula is replaced with “false”. For example hiétcriterion iss(P=p = Q=q), and if all the state-
realisation nodes involving are unreachable, then the criterion is replacéu@{false= Q=q).

The following two examples illustrate how indéde paths can be used to reduce the size of the
resulting slice. The first example contains a grajth two terminating dependency paths and the
second example contains a graph with a cyclic digery path.

Example.

As an example, consider the Behavior Treegatei 43. Assume the criterion ig{ which means
that the slicing process would begin with the nodé This node is control dependent on the node
B?b?.B??is interference dependent on two nodesBfbéin the middle thread (labelled with the
number 1 for ease of explanation) andgfig in the last thread (labelled with the number 2hie
following, the middleB[b] node will be referred to &1 and the otheB[b] node a82. The nod®1 is
control dependent ab?d?, which is in turn data dependentjd] in the left thread.

A
[a]

B D B 2
?b? 2d7 [b]

J \

C B 1

[c] [b]

N

D

[d]

Figure 43. Example Behavior Tree

80 Infeasible Paths

The dependency graph for this example is shaviAiigure 44. Since there is no reversidfu]
cannot execute befo@c], so it cannot influence the slicing criterion.iAghe previous section, the
notion of threaded witness can be used to idethii$ysituation. Th&[d] node will not be included in
the slice because the chain of dependenciesfaito C[c] does not form a threaded witness. How-
ever, the path uptd?d?, which includes the node8d?,B1, B?? andC[c], does form a Threaded
Witness. Due to this, all these nodes will remaitie slice. The resulting slice is imprecise, bsea
there is no use in includirgy andD?d?. These nodes cannot execute urgdisdoes, so they cannot
influence the criterion node. On the other h&®;? can influence the criterion node, due to its de-
pendency t@2. If B2 executes, the guaBPb? will be satisfied. The infeasible path approaah ¢
correctly identify which nodes to keep in this attan. There are two maximal paths in the dependen-
cy graph starting ac]: one ending &d[d] and one ending &2. The node8?? belongs to both of
these paths. The path endin@gt] is infeasible, so none of the nodes on that pétivevadded to
the slice. The second path is not infeasible, smtiue£[c], B?? andB2 will be added to the slice,
which produces the desired result.

@ s
@

¢ A

Figure 44. Dependence Graph for the Behavior Treein Figure 43.

Example.

For a second example, consider the Behavicg $hewn in Figure 45. Again assume that the
slicing criterion i<C[c]. The dependency graph for this Behavior Treeasvslin Figure 46. As seen
in the figure, there is a loop in the dependeneylar This is because the na@fe? depends on the
initial criterion nodeC|c]. Since there are no reversions or reference nodestree, it is impossible
for bothC?? to be dependent a@ic] and forC[c] to be dependent ai¥c?. The threaded witness
approach identifies this conflict as being causetthb second occurrence@jé]. This results in all of
the nodes remaining in the slice.

A
[a]
B D C B 1
?b 7 ?2d7 ?2¢7 [b]
2 NE \
C B 1 D
[c] [b] [d]

Figure 45. Example Behavior Tree.

Proof of Correctness 81

Using the infeasible path approach, therevewertaximal paths in the graph: the cyclic pathtstar
ing and ending at[c] and the path starting @fc] and ending a2. The cyclic path forms an infeasi-
ble path. Therefore, none of these nodes will beddb the slice. On the other hand, the path gndin
atB2 does not form an infeasible path, so the nafigsB?b? andB2 will be all added to the slice.
This is correct since these are the only nodeg#rainfluence the criterion node. The resultinges|
has far fewer nodes than the slices obtained bghteaded witness method.

@, B
& @

I
="

Figure 46. Dependence Graph for the BT in Figure 45.

I nitialisation Nodes

Even though a node may have had one or mosndepcies that were ignored using the infeasible
paths method, it will often still have a dependetacgn initialisation node. For example, in Figide
the node D?d? would also be dependent on thdigatian node for the component Since D?d?
now has no other dependencies, the guard will Begteed to be satisfied if the initial valuelds
d, and would not be satisfied otherwise. Using géravaluation of the initial node, the outcome of
the guard can be decided. If the guard cannottisfied, then the node will not be able to influenc
the slicing criterion and can be removed. This afgalies to attribute nodes; see the Section 4.1
an example of a program involving attributes.

4.3 Proof of Correctness

The infeasible path approach produces morégarslices. In this section, it will be shown ttiet
slices produced are also correct, an essentiaresgent if the slices are to be used for verifimati
As was done in the previous chapter, the notidrsiulation will be used to provide the correctes
result. However, unlike the earlier proof, whicleds form of weak bisimulation, this proof uses
strong bisimulation. A slice is bisimilar to thé&slwith infeasible paths removed. The strong bisim
larity arises from the fact that the infeasiblehgaire paths which could never have executed,ieven
the normal slice. Therefore, despite the normeésiontaining extra nodes, the actual behaviour of
both systems is exactly the same.

THEOREM 3.
Let G; be a slice an, be the slice obtained after infeasible pathsem®wed fronG;. Then, the
transition systergcorresponding t6; is bisimilar to the transition systesinf corresponding t&,.

i.e.S~=, SInf.

82 Infeasible Paths

Proof.

LetS = (81, AP, A, .4, N1,— 1) andSInf = (83, AP, A, .5, N,— ») . In the following, lets,
S, S, S, ... Fange oves; andt, t', ty, ty, ... range oves..

Vn e init(§), Ame init(SInf).
= Vs e Jyq, At € I, such thatf(s) = .£(t).

A relation® can be constructed such thég andt; as above g, t;) € R, and
Vs, tsuchthasRt, if 3s € S, At € S anddne N4, such thas N gandt - t', thens Rt

To show thafR is a bisimulation, the following must hold:
Vs tsuchthas Rt,
i) £(5)=2£0),
(ii) if 4s € s3anddne N, such thas n s, then3dt’ € S such that n t', wheres
Rt and
(iii) if It € S, anddne N, such that n, t', then3d s e S such thas it s, where
S Rt.
(i) As shown abovey's € J,, andt; € J, such thag R t;, £(s) = .2(t).
Vs, t” such thats’ Rt” and £(s") = L"), if s —>< andt —+t,
= L) = 4s") + updategn) and.2(t) = .£(t") + updategn).
= 4s) = 41).

(i) Vs, tsuchthasRt, if s —n>s’, then3t’ such that —n>t’, wheres R t'.

By contradiction, assumgs, t, s such thas ® t ands N g put At such that N ¢ ands
Rt.

= Jnsuch thas —> sbut At such that — 2t

Case 1n¢ No.

Vnc € Cy, eitherinf(n, n;) (Case 1a) ostronginfn, n)) (Case 1b).
Case laVn;e C<P’ inf(n, n)
= V' e depPathé) such thah e =, infPath(m).

= A< such thas >,
which contradicts the assumption.
Case 1b¥n. € Cy, strongin{n, n;)

= 9 n, suchthat

N, (ﬂfdnx andinf(n,, n).

inf(ng, n;) = V' e depPathé,) such thah, € T andinfPath(m).
= A, s« such thas SLY S+1

= A< such thas e s, by Definition 16 and Definition 20,
which contradicts the assumption.

Case 2ne W,
= n e ready(s) butn ¢ ready(t), for some thread.

= dn, € N, such than, e nandn, ¢ No.

Slicing Algorithm 83

= eitherinf(n,, n.) or stronginfn,, n;).
= 7, 5.1 such thas Ll S+ 1IN S
= n ¢ ready(s),

which contradicts the assumption.

(i) Vs tsuchthasRt,ift ¢, then3s such thas —1 s, wheres Rt.
By contradiction, assumgs; t, t' such thas R t andt n, t but s such thas n s ands
R
= Jnsuch that -~ tbut Zs such thas —+ s.
Case 1ln¢ WV,
NS N
=>nenN,
which contradicts the assumption.

Case 2ne N,

= n e ready(t) butn ¢ readyy(s), for some thread.
There are two cases:

Case 2adn, € N, such thaty 4 n andny, ¢ N;.
No SN,
=>neN,
which contradicts the assumption.

Case 2b3dn, € N4 such thany >l n andn, ¢ N, wheren, being inA, preventa
from executing.

= ny o4 n orny S0

e N,

= Vn.e C<P’ inf(n,, n¢) or strongin{n,, n.)
= stronglIn{n, n;), by Definition 40

= n¢ N, by Definition 41,
which contradicts the assumption.

4.4 Slicing Algorithm

The algorithm for removing infeasible pathgiien on the following page. It is based on thealg
rithm given by Krinke for threaded witnesses. Tigedthm recursively explores each natia the
dependency graph. An array of notlegReaches maintained, which records the last node reached
so far in each thread. Additionally, the algorithraintains a lispath which contains the nodes that
were traversed so far to reathAnother parameter last, which is the node that is dependenton
that called this function at an earlier iteratibhe final parameter is a booleaiterion, which is true
if nis the criterion node that started this search.

First, lines 3-5 check thais reachable by comparing it with the nodes indbtkeachedrray. If
it is reachable, the booleanf is set to false. Next, line 6 checks whetheiithboolean is false and
thestronglnfboolean, which is an attribute of the node, is ffse. Thestronglnfvariable indicates
whether the node has already been identified agjlséiongly infeasible. In such cases, the node wil
not be included into the slice even if there isthapvalid dependency path containing iinffand

84 Infeasible Paths

stronglinfare both false)is added to the currepathat line 7. Then, lines 8-9 update khstReached
array to contaim in each of its threads. Lines 10-14 then reculge@l the same function for each
of the nodesnon whichnis dependent. If, for sonmg, the recursive call returfelse it indicates that
the path throughis infeasible. If one of the calls retuitnge, this is recorded in lines 13-14 using a
boolearpathExistsAdditionally, if nis control or synchronisation dependent on sondemandm
turns out to be infeasible, then #teonginfattribute o would have changed. Thus, line 15 checks
whether thgpathExistssariable is true and makes sure thiastronginfattribute is stilfalse If this is
the case, it means there is a feasible path camgainAt line 16 it is checked whetheis the criteri-
on node that is the starting point of this backwaraversal of the dependency graph. If so, thesent
feasible path is added to the slice, in line 1he@tise, the function simply returns true, to iatkcto
the previous node that there was a feasible pathnup

Unlike the algorithm for creating the sliceyen in Chapter 3, this algorithm does not prevent a
node from being explored more than once. Therefloesalgorithm is exponential in the worst case,
in the case where each node is dependent on ebhenyrmde. However, in practice such a situation
would rarely occur. Furthermore, as future woik filanned that a polynomial-time algorithm can be
devised, which stores the required informationuichsa way as to avoid multiple traversals of the
same paths in the graph.

bool checkinf (array lastReached, node n, list path, node last, bool criterion){

1 t = getThreads(n);
2 bool inf = true;
3 foreachtdo
4 if (reachable(lastReached|t], n)) then
5 inf = false;

end if

next t

6 if (inf == false AND n.stronglnf == false) then
7 path.add(n);
8 for each t do
9 lastReached[t] = n;

next t
10 bool pathExists = false;
11 for each m in n.getDep() do
12 bool b = checkInf(lastReached, m, path, n);
13 if (b) then
14 pathExists = true;

end if

next m
15 if (pathExists AND n.stronglnf == false) then
16 if (criterion == true) then
17 includePath(path);

end if

18 return true;

end if
19 return false;
20 else //ifinf == true or n.strongInf == true
21 if (depType(p, n) in {cd, sd} then
22 p.stronginf = true;

end if
23 return false;

end if

Slicing Algorithm 85

4.4.1 Side Note: Application to Programs

This approach is also relevant to programssten the following extract of a program:

Thread 1 Thread 2
it (y =5{ (1 it (z=3){ (4
c: =4, (2) y: =5; (5)
}el se{ }
z: =3; (3)
}

Assume that the slicing criterion is {c}, sat&ment 2 is the starting point for slicing. Thpefed-
ency path through the corresponding PDG is <3, 4, 2>. Statements 3 and 2 do not form a
Threaded Witness, so this is an infeasible pattteBient 4 is also dependent on the initial value of
and statement 1 is also dependent on the initiabvafy. After ignoring the nodes in the infeasible
path, nodes 2, 1, 5 and 4 all still remain in fleglue to these dependencies to initialisatiateso
However, a simple analysis could decide whethaobthe guards at 4 and 1 hold. For exampte, if
is initially set to 1, the guard at 4 will neveldicso it can be removed. This illustrates thatrifiea-
sible Path approach can reduce the size of prosiiaes, as well as BT models.

This chapter described a method for reducingsfurther, by removing nodes which lie on infea-
sible paths. The technigue can be of use wheaoeislstill too large for model checking. The metho
was proved to produce correct slices. The nexttehaypll introduce a novel method for handling
properties containing theexttemporal logic operator.

86

Infeasible Paths

SLICING WITH THE
NEXT OPERATOR

The slicing algorithms described so far enthagoreservation of CTly properties, i.e. properties
without thenextoperatorX. This chapter introduces an approach for incluéixiga nodes into the
slice, in order to preserall CTL" properties. The approach is based on the obsemhtt proper-
ties with thex operator may not be preserved on the slice becautsen stuttering nodes have been
deemed irrelevant and removed. By identifying thessential stuttering nodes and re-inserting them
into the slice, th& properties can be preserved. The technique faeprmgX properties can be
applied for any language, by utilising a proposea form of branching bisimulation calleext-
preserving branching bisimulatioBection 5.1 introduces the problem and discugbes solutions
for it. Section 5.2 describes the proposed appraachgives the definitions for next-preserving
branching bisimulation. Section 5.3 provides a pwoich shows that next-preserving branching
bisimulation preserves full CTLFinally, Section 5.4 demonstrates the applicatforext-preserving
branching bisimulation by describing how to creatext-preserving branching bisimilar slice from a
Behavior Tree.

5.1 The problem of removing stuttering nodes

When slicing is used for reduction of modelsverification purposes, it is essential that tinalfi
slice preserves the same properties as the origiodél. In other words, a property holds on the
original model if and only if it holds on the slicEherefore, the range of properties that satfsfy t
requirement should be as large as possible, fdrehefit of the user who wants to verify a property
Unfortunately, slicing does not normally preserk@perties containing theoperator. This problem
IS not unique to Behavior Tree slicing; all formigablished slicing algorithms do not claim to pre-
serve properties witk. Refer to Section 1.2 for a discussion about atheing algorithms.

The reason for this problem can be illustrated simple example. Consider the trace of behaviou
shown in Figure 47. Assume that at stgt¢he following property is to be verifiedp. Obviously,
the property holds, sinegsatisfiep. However, imagine that a slicing algorithm remosietiecause
it is an unnecessary stuttering step, identictileégrevious step. Now, the property no longer$old
because, does not satisfy.

S S
|
|

T T8

p - P
Figure 47. The stuttering problem.

This problem arises because slicing algorithms collect nodes which are either observable or in
some way influence an observable node. Properitbstie nextoperator, however, can even be

88 Slicing with the Next Operator

influenced by nodes which do not have any impadhewariables in the property. There is no way to
identify such nodes using normal slicing techniques

Vasudevan et al. (2005) proposed an approacietantecedent conditioned slicinigr slicing
properties that conform to specific formats. Thiduded formulas with theextoperator in the for-

matG(p =X*q), wherep andq are formulas an&* represents théoperator appliel times. Based
onconditioned slicingCanfora, et al., 1998), which restricts a slwstatements satisfying a given
condition, this approach restricts slices to stat@siin which the antecedent of the formula holds.
However, they did not present a proof of correctmes give details of how they ensure the preserva-
tion of such formulas when stuttering steps areoxeu.

Many authors choose to simply restrict formitethiose without. Lamport (1983) argued against
the use of theextoperator. His argument was that a step has nointgiarreal-life continuous-time
systems as it is a concept used in models. He éitha¢ a step is only of interest if it represents
change in some property of the system and therstateering steps should not be distinguished.
Lamport suggested that any property involvingrtbetoperator could be re-stated in terms of some
other characteristics of the system. For exammtead of stating that an evgishould happen in the
next step, it should be stated thatill happenbeforesome other event occurs. Dafh896)gave a
similar argument against timextoperator.

Despite these arguments, tlextoperator is often useful in practice. Since maelcking is
performed on discrete models, it is often usefgltecify properties using the notion of steps, wher
each step represents a certain period of timegertain phase of the system’s behaviour. In partic
lar, using thenextoperator can be an effective technique for spiegjfs requirement that something
will occur in a certain period of time. It is ndtvays possible to state the property in terms loéot
events in the system, as suggested by Lamporayitia the case that an event must happen within a
certain period of time or phase of the system djperaThe modeller may decide that this can be
represented by a number of steps, without it besticted to any particular steps. The closest-alt
native would be to use tle@entually(F) operator, but for some requirements this magbaeak, as
it does not provide any guarantee of the periaghith something will occur. Theextoperator is
therefore essential for specifying such properiasexample of this is the prope&yCH, = high =>
XXX(alarm = sounded)), used in the mine pump case study presented tio8&c2. In other words, it
is always the case that when the methane is @thaldniel, three steps later the alarm should have
sounded. Obviously, in the real system there wbeldo notion of steps, so “three steps later” would
be meaningless. However, it is known that undemaboperation, the system should perform certain
actions before sounding the alarm. Due to the lefhvglanularity of the model, the actions corregpon
to three steps in the model, so can thereforefbared to by three instances of tiextoperator in the
formula.

The mine pump example introduces the mainadiltfy with using thenextoperator on sliced sys-
tems: the difference in granularity between thginal model and the slice. Since irrelevant steps a
removed, a slice step may represent multiple stegige original model. This presents an obvious
difficulty when verifying properties that refer spiecally to a certain number of steps. The propert
itself gives no clue as to whether the user wasrniaf) to steps in the original model or in theesli
However, recall that the motivation of slicingassnable the verification of properties that mayeha
not been viable on the original model. Therefdra user specifies thabccurs withimnnumber of
stepsmis referring to the steps in the original modéleTdeal goal is to verify such a property on
the slice, despite the differences in the two matiof steps.

Regardless of the arguments for and againsisief thenextoperator, since many common prop-
erties contaimext it is beneficial to provide the option of slicimgth thenextoperator, for those who
would find it useful.

5.2 Process of Slicing with the Next Operator

As explained in the previous section, propertiggaining thenextoperator are referring to steps in
the original model, which may not necessarily cgpomnd to steps in the slice. However, it is only
necessary to preserve the correct number of stepe iregions of the transition system which are
relevant for the property. For example, in the ninmp case described above, itis only important to

Process of Slicing with the Next Operator 89

ensure that the state of tlarmcomponent in the slice three steps aftef@Hgcomponent reaches
highis the same as it was in the original three stffipsCH, = high. At these specific locations, the
steps in the slice should correspond exactly fusstethe original model, but at all other locasicihe
size of the steps are irrelevant.

The goal of this approach is to replace certairendbat were removed by slicing, in order to en-
sure that the size of steps are preserved at ithhgsetant locations. The question is, how does one
determine which nodes should be replaced? The afigsén the observation that the only time a
propertyXe will not be preserved is when at some point, e atate evaluatgsdifferently than the
state two steps later, i.e. the next next stefadt it turns out that there are only a finite fogmof
places where this phenomena occurs.

5.2.1 Identifying the relevant locations

Formulas expressed in CTL* which contain Xheperator will always contain either &ror A
operator somewhere before thdrecall from Section 2that thex operator is defined over paths, not
states, which is the reason why there will alwagsE or A. Note that unlike for CTL, the or A
does not have to necessarily be the operator inatedglipreceding the, for example, the formula
E(p A Xq) is valid in CTL* but not in CTL. Nevertheless, thewill always be an outéror A sur-
rounding any sub-formula containiXg There are therefore two possibilities to considehe X
refers to a specific pati)(or all paths4).

First consider the simplest case, where thauta isAXp, wherep is an atomic proposition. Con-
sider the transition system shown in Figure 48.diagram on the left is the original model and the
diagram on the right is its slice. In the origingstem, at stat®, p istrue, sos = AXp. In the slice,
states; has been removed, sgtransitions directly t@,. This presents a problem, sirgse&loes not
satisfyp, and thus, does not satisfXp, which would result in a false counterexampleidentical
situation occurs foEXp.

e &
GO Go
&

Figure 48. A Model and its Slice

The converse problem also exists, wherebyse fabsitive result could be obtained. Consider the
transition system in Figure 49, which is the ineavkthe previous transition system. In this cage,
AXp in the original model, big, = AXp in the slice. Again, the same situation occur€Xar.

The two cases above are not just simple exantiley demonstrate the general problem. In a
normal system, there would probably be multiplépatmanating frors, defining the many possible
paths of execution of the system from that pofrthd formula isAXp, then paths that conform to the
first case must be preserved, in order to preyamicus counterexamples. As well as this, paths tha
conform to the second case must also be preseéosasure that a real counterexample is not fost. |
the formula i€Xp, a path of the first type must be preserved strmay be the only path that satisfies
Xp, in which case the formukxp will only be satisfied if the path is preservedniarly, a path of
the second type must be preserved since thereenaymaths that satisfyp. In this case, Xp holds
on the path after slicing, the formulsp would hold on the slice whereas it did not holigioally.

90 Slicing with the Next Operator

COR N COE
€

€

p

€

Figure 49. A Model and its Slice

The important thing to observe about the albwee=xamples is that the transitiens anobserva-
ble transition, because it modifiepswhich is a variable mentioned in the formula.sTikithe reason
thate, remains in the slice in both cases. For thesescassimple solution would be to locate alll
observable transitions, and determine whetheti@ghg transition executes immediately befori it.
so, the stuttering transition must be includechim glice, preserving the original behaviour of the
system.

In general, this solution is sufficient for a@lst all types of properties. Assume that the ptyper
AXo orEXo, wherep is some arbitrary property not containingXteperator, and that in the diagrams
above, alb’s are replaced with's. Consider each of the path operators:

» Leto=Fp. Assume there is a path on whighis true as, but false as,. Since only a partic-
ular path is being considered, the only way fordfagus ofp to change from one state to
another is ip became false &. Therefore, the same method for including exaaditions
can be used for this situation. The converse gasereFp is false as, but true as,, is not
possible. For any particular path,pifcan eventually be reached fra then it can be
reached frons; as well.

» Leto =Gp. Assume there is a path on wh@his true at sbut false at,. By the definition
of G, this is not possible. The same logic shows thatot possible foGp to be false a;
but true ak,. ThereforeAXGp or EXGp will be preserved in the slice without any extodes
being added.

For these simple cases, the proposed methattfading additional transitions, whereby an extra
stuttering transition is included for every obséteaone, works well. In fact, it will be demonsgdt
in Section 5.3 that the method is suitable for alinadi types of formulas. The only exception is whe
the formula is of the formXEe or EXAe. Intuitively, this makes sense because a pathuiarmill
only change its validity from one state to anothene of the atomic propositions in it change. The
sub-formulage andAg are instead evaluated over states and so the sathedns not suitable for
these types of formulas.

To demonstrate the reason why it does not Yaoitate formulas, consider the diagrams in Figure
50. The transition system shown on the left isatiginal model and the system on the right is its
slice, where the transitian and staté;, have been removedssume the formula iSXE(Fp). There
are two possible paths framthe path &, ti, t,, tz> and the pathts; ty, t;>. The formula holds at state
to on the original model, because on all of the pfatima to, the next state tg, and fromnt; there exists
a path on which is eventually true. On the slice, however, theiida does not hold. As in the origi-
nal model there are still two possible paths, histttime the next step aftgdiffers on each path. On
one path the next stepjsfor which there does exist a path where eventpdiblds, but on the other
path the next stepig from which there is no possible way to reaclatestvhere holds. Therefore,
the formula holds on the original model but notlom slice.

Process of Slicing with the Next Operator 91

The inverse problem exists for formulas offtven EXA(Fp). Consider again the diagrams in Fig-
ure 50. The property does not holdeain the original model, since for both possiblenpabn the
next state,, the propertyFp does not hold. On the other hatidhas been removed from the slice, so
the next state differs depending on which path@sen. On one pathijs the next step, ardp does
hold att,, SOEXA(Fp) holds on the slice.

Note that this problem does not occuEike or AXAe. This can be easily seen by considering the
diagrams above using the formabeA(Fp). The problem witlAXE(Fp) described previously is that at
t;, there exists a path whehe holds, but at, in the slice, no such path exists. Howevet;,atFp
does not hold due to the path throtglsoAXA(Fp) does not hold on both models. Similarly, if the
formula isEXE(Fp), then unlike folEXA(Fp), the formula holds on both models, becaude &tp
holds whereasFp does not.

Figure 50. A model and its slice, to illustrate differences in AXE or EXA formulas.

The problems witBXAp andAXEg are caused by a state having multiple paths eimgrfedm
it, wherep may hold on some of the paths but not on otheste that the problem would not occur if
both paths were still possible after one branchaliasen. For example tifandt, looped back té,
in the previous figures. Therefore another critéoiaidentifying these situations is to determine
whether one of the branches leads to a path whichtipossible via the other branch.

In conclusion, extra stuttering nodes mushbkided into the slice before every observablesiran

tion and before every branching point, such thatlmanch leads to a path which is unreachable via
the other branch.

5.2.2 Approach for Preserving Next

Based on the previous discussion, a proceduredatinog next-preserving slices becomes evident.
Extra stuttering steps must be placed into the slicvarious locations. Specifically, stutterirgpst
are required before observable steps and certads tyf branching paths. The branches are those
where one of the paths performs an observable tétatis either not present on the other path at al
does not occur on the other path within the sameben of steps. This is formalised as a function
diffPaths defined below, which returns true if and onlyhiére are two paths satisfying the above
criteria, starting at the given state.

DEFINITION 43. DIFFPATHS
Let T be a doubly-labelled transition system such Tha(s, AP, J, £, 4, —).
For a stats e Sand a CTL path formulap, diffPathgy(s) iff:

92 Slicing with the Next Operator

dp1=<s &, s, a1 ...> anddp, = <S, &, S, &1...>, Wheres # scand either:
i) Ja& € pisuch thabbsp(ai) anda; ¢ p, or vice versa, or
i) Im=>= 0and3a € p:1{S+m] Such thabbsp(ai) anda; ¢ px{Swml Or vice versa.

5.2.3 Number of Stuttering Transitions Required

The next consideration is the number of stimienodes required. The number depends on the
formula to be verified, specifically the numbeKafperators surrounding each atomic proposition. As
will be seen, in order to ensure that the saméeation result is obtained on the slice, an et
tering step must be included for ev&rpperator. For example, if the formulaa¥Xp, wherep is
some atomic proposition, two stuttering stepsegeired before any observable transition or branch-
ing transitions. If the formula BX(p A Xq), then two stuttering steps are required. THie@ause the
g proposition is nested inside tWaperators. Even though theroposition is only surrounded by
oneX operator, the number of stuttering steps requioectsponds to the maximum number of nested
X operators. The number ®foperators is referred to as thdepthof the formula, given by the fol-
lowing definition, which is based on the definitigien in Kwtera & Strefek (2005) for LTL formu-
las.

DEFINITION 44. X-DEPTH
Thex-depthof a CTL* formula is given by the following, whedg andy, are state or path formulas
ande, @; andeg, are path formulas:

x-deptlfyp) = 0, where) € AP,

x-deptif, A VP,) = maxx-deptlf }1), x-deptlf },)),
x-deptlf— 1) = x-deptlf y,),

x-depti{Eq) = x-deptifp),

x-deptifp: U ¢2) = max(x-depttfe,), X-deptiiepy)),
x-deptt{Xp) = x-deptlfp) + 1.

5.3 Preservation of Full CTL*

The discussion so far gave a general explanfitiavhy the inclusion of stuttering steps ataiert
locations allows properties with tlkeoperator to be preserved. This section provegdbisonclu-
sively, by the proposal of a new form of brancHilgimulation that requires both transition systems
to contain extra stuttering steps according t@tbposed approach. This new bisimulation is termed
next-preserving branching bisimulatiofhe new bisimulation is an extension of branchisgnula-
tion with explicit divergence, as was discussesiantion 2.2.5. As was seen in that previous section
branching bisimulation with explicit divergence gzeves CTLy, which is the variant of CTlex-
cluding the next step operator. If two systemseleged by a next-preserving branching bisimulation
it means they are related by a branching bisinaratiith explicit divergence, as well as containing
extra stuttering steps. Basing the new type ofrhifation on branching bisimulation ensures that it
able to preserve CTly as well. It remains to be shown that next-preseriranching bisimulation
additionally preserves properties that conain

The following three definitions explain how thext-preserving branching bisimulation operates
over states, transition systems and paths, regplcth next-preserving branching bisimulation must
satisfy two criteria. The first criterion is théti statesis related to a statén another transition sys-
tem via a next-preserving branching bisimulatibents is related td via a branching bisimulation
with explicit divergence. This requires that evelngervable step taken framust be matched by an

Preservation of Full CTL* 93

observable step taken fraipossibly preceded by any number of stutteringsstend vice versa.
Additionally, every divergent path froemust be matched by a divergent path ft@amd vice versa.

For next-preserving branching bisimulationréhie an additional requirement thad i followed
by a number of stuttering steps and then an olislerstept must also be followed by a number of
stuttering steps before the matching observahbeaste vice versa. The same holds for the case where
sis followed by a number of stuttering steps arttteaches a stafesuch thatliffPathg,(s). The-
se are the two cases of the second criterion idgfirition. In these cases, the number of stuteri
steps required befotes the minimum of th&-depthof the formulap and the number of stuttering
steps before. The reason for this is thateptlip) stuttering steps are necessary in order to preser
the formula. However, it may be the case that thezdess thar-deptlfp) steps aftes. This indi-
cates that the first system may not have satigfiedormula. Since the aim is to obtain the same
verification result using the second system, d@rily necessary to have as many stuttering steps as
there were aftes. On the other hand, there may be more #daptlip) steps aftes, in which case
the additional steps are unnecessary.

DEFINITION 45. NEXT-PRESERVING BRANCHING BISIMULATION OVER STATES
Let Ty, T, be doubly-labelled transition systems suchthat s, AR, J, £, A4, —), forie {1,2}.
A relation Zis anext-preserving branching bisimulatigvith respect to a CTlformulag iff
(i) £is a branching bisimulation with explicit divergenand
(i) for everys Zt, wherese T, andte Ty
Vp, € rungT,), such thap, = <s ay, S, &, Sy, -..,S-1, &, §> and Vi such that
0 <i <], — obgy(a), if either:
= obgy(ay) or
= diffPathgy(s.1), then:
dp, € rungTy), such thap, = <t, by, to, by, ty, ..., t, by, tws™>, b = &, and for somé >
min(- 1, x-deptie)), Vi such that G< i <k, — obgy(b).

Two states andt arenext-preserving branching bisimilawith respect to a CTlformulag, denoted
s é(p t, iff there exists a next-preserving branchingrbidation#2 with respect t@ such thas 2t.
[]

The definition above states that a sta@ext-preserving branching bisimiléw another stataff
two criteria hold. The first criterion is the&ndt are related by a branching bisimulation with eotpli
divergence. The second criterion states trssifollowed byj-1 stuttering steps to a state which
is either followed by an observable stepr satisfiegliffPathg,, thent must be followed bl stutter-
ing steps, wherkis the minimum of and thex-depthof the formula. The following definitions ex-
tend this to transition systems and paths.

DEFINITION 46. NEXT-PRESERVING BRANCHING BISIMULATION OF TRANSITION SYSTEMS
Let Ty, T, be doubly-labelled transition systems suchthat($, AR, ./, £, A#;, —), forie {1,2}.
T, andT, arenext-preserving branching bisimilawith respect to a formula, denoted

T, éq, T, iff éq, to for all s, € 1, andt € 1.

DEFINITION 47. NEXT-PRESERVING BRANCHING BISIMULATION OVER PATHS
A pathm, is next-preserving branching bisimilar tqoathm,, denotedr; é(P T, Iff for everys € m,
there exista t; € m, such thag é(p t; and vice versa.

]

94 Slicing with the Next Operator

Some auxiliary results will now be establishedcerning next-preserving branching bisimulation.
Using these results, Theorem 4 will prove thatpegserving branching bisimilar systems preserves
full CTL". The following lemma, Lemma 7, demonstrates tlistenxce of next-preserving bisimilar
paths when two systems are next-preserving bisiritas result arises directly from the definitioin
next-preserving branching bisimilar transition eyss. It will be used later in Theorem 4, for theeca
where the property involvestaoperator, specifying that there exists a path.

LEMMA 7. EXISTENCE OF NEXT-PRESERVING BRANCHING BISIMILAR PATHS
Let Ty, T, be doubly-labelled transition systems suchia(.$;, AR, ., £, 4, —), forie {1,2}.

Then,Tl é(P T2, = VTl'l € Tl, | Ty € T2 such thaﬁTl é(P TTo.

Proof. By induction over the lengtim of the pathr; = <s, s, ..., S

Basecase m=0
TE,T
=>Vgely, Ity e |, such thak é(p to, by Definition 46

=dm, € Ty, such thatr, = <>, wherem; é(P o

Induction step:
Assume it holds fom=k, i.e.m; = <, s, ...,S> and3 m, € T, such thatr, = <, ty, ...,t;> and

*
1 =0 T2,

Form=k+ 1:

S é(p t;, by assumption and Definition 47.

> Vs e, such thas - s, eithers éq, t or3t, t” e S such that; > t” Ay
ands = t', by criterion (i) of Definition 45

> Vmn'=m S, dn) € {m~ <ty ...,1", > m, - <t'>, m} such thatr,’ é(p Ty,

O

As was discussed previously, for formulas doirig anEXA or AXE pattern, normal slicing meth-
ods do not ensure the preservation of the formBRasall thats is an operator derived from The
problem arises when there is a state with moredharpath emanating from it, where one path leads
to the satisfaction of a formula but another dags Ihthe state was reached by a stuttering gtep,
may be left out of the slice, which may cause armaare of the paths to become unreachable at the
next step, thus changing the outcome of the fornTila proposed solution replaces stuttering steps
before any statefor whichdiffPathg,(s) holds. In other words, a staterhich leads to two different
paths, where on one path there is an observabéethatieither does not occur on the other path with
in the same number of steps or does not occur @hal reason for this requirement is that if treme
two paths starting from a stagesuch that one satisfies a formula but the otbesdhot, then one of
the paths must have executed an observable stefh¢hather was unable to match within the re-
quired time. This concept is shown by the followleigma, Lemma 8. It is necessary for proving the
case where the formula containsxaiollowed by arE in Lemma 9.

Assume there is a statevhich leads to two different paths, one startiitp s and the other with
S. An example is given in Figure 51 below. Assuna there is a statgon the first path such that
the suffix starting ag satisfies the given CTlpath formulagp. Further assume that on the second
path, the suffix starting at.;, i.e.j steps afteg, does not satisfy. (Note that the stajesteps afteg,
on the first path is compared with the sjaeps aftesg,, nots,, on the second path. This is necessary

Preservation of Full CTL* 95

in order to produce the required conditions ned¢oleldemma 9.) If these conditions hold, the lemma
states that there is an observable step on ohe péths, such that either the observable stefdesh

5 (ors«;) and the other path has no identical step befgr@r s), or the other path has no matching
observable step at all.

o | @ p1

\ 4

—
So S1 Y) Si1 S;
Qx

Oks1| Oke2 | Ok | P2

A\ 4

Lk Lk+1 Sklz Skj-1 5k|+j
Figure 51. The two paths for Lemma 8.

Example.

Consider again the transition system shown orefhefl Figure 50. The statgin the diagram corre-
sponds t& in the lemma, as it has two succesdgeamdt,. In the diagram, the path starting from
does not satisfy the formutéip, whereas the path starting frordoes. (Using the terminology of the
lemmayt; corresponds tg andt, corresponds te.;, whergj = 0). This example satisfies Lemma 8,
since there is an observable steptiits, on the path &, t,, t3 > but there is no matching observa-
ble step on the pathts t; >. []

LEMMA 8. OBSERVABLE STEPS ON BRANCHING PATHS
Let T be a doubly-labelled transition system such Tha(s, AP, J, £, 4, —).
For a statey € Sand a CTL path formulap,
if dp1=<sp, a1, S, &, S ...> anl p, = <y, &, S a1, See1 --->, Such that for some= 0, p1[S) E ¢
andpy[s«) ¥ @, andVi such that G< i <j, p4[S) E @,
thendiffPathsg,(so).

Proof.
By structural induction ovep.

Let P1 = <S()a A, S, a S > anc*.)Z = <S)1 A, Sar A1y Skrl > Letpl[%» = (O] andp2[3(+1>> # .

Assuming that the Lemma holds px; ., @1 andeg,.

[] (P :ll):
> |eAP:
pis) = @
S sEV..(1)
PoScid # @

S Sy Y(2)

= Suja1 = Sej andobgy(«), from (1) and (2),
>S4 5 anda # B, from (1),

=@ € pxs] such thabbsy(a) anda; ¢ pi(s],

= diffPathgy(s), by criterion (ii) of Definition 43.

> p==1i

Slicing with the Next Operator

pilS) F @

S §F -

S §

< pas) # Y1(1)

plSai) # ¢

S Suj E U

S S E 1

S pdSe) Ehr ()

= diffPathgy(s), by (1) and (2) and the induction assumption.

> V=AY,

pilS) F @

S SEYAY,

& 5 E Prands E ¢,

< pqs) = ¥randpa[s) E ¥, ...(1)

plSai) # ¢

S Suj V1 A P2

© §HE P Ors # |,

< pa[Sei) ¥ 1 OFpa[Seid # P2 ...(2)

= diffPathg(s), by (1) and (2) and the induction assumption.
>) =E@

pilS) F @

< § F k@2

& dp3 =<§... > such thaps = @..(1)

plSai) # ¢

< Suj F E@2

& Vps=<Sqyj... >,pa it @2

= dps = <Suj...> such thap, # ¢ ...(2).

= diffPathgy(s), by (1) and (2) and the induction assumption.

P
puS) F ¢
S p[S) E @1 e @
p{Sai) # ¢
S po[Sei) E @1(2)
= diffPathg(s), by (1) and (2) and the induction assumption.

" e=Q1 A @2
piS) E @
< piS) F oL A @2
< pyfS) E @1 andps) E @,(1)

Preservation of Full CTL* 97

n (P:

[] (P:

paSei) ¥ @
< poSei) @1 A @2

S po[Sei) ¥ @1 andpy[Se) # @z(2)
From (1) and (2), either:

Pl[ﬁ>> E Q1 andpz[S(+j>> H @1 0r
puS) F @2 andp2[Se) ¥ @2
= diffPathgy(s), by the induction assumption.

X1

piS) F ¢

< paS) E @1(1)
p2Sci) # @

< P S+ ¥ @1 -...(2)

From (1) and (2) and the induction assumptioneeiifor (ii) of Definition 43 holds for
§+1 in P1 a-ndsk+j+1 in P2-

Therefore, either (i) or (ii) of Definition 43 tad fors in p; ands.; in p,

= diffPathgy().

P1U @2

piS) E @1 U @2

<> dvsuch thav > j andp[s) = @3(1)

andVw such that &< w<v, p[sy) = @1.(2)

paSei) ¥ @1 U @2

<> eitherd x such that G< x <y, for somey, wherep,[Sux) ¥ @1 ...(3)

or Ay such thay > j andp,[Sey) = @z.....(4)

From (1) and (4), either criterion (i) or (ii) ofeinition 43 holds fos, in p; ands, in

P2, O
from (2) and (3), either criterion (i) or (ii) ofédinition 43 holds fos, in p; andsqx in pa.

V=jandx = j,
so criterion (i) of Definition 43 holds fain p; andsy; in p,
= diffPathg(s).
O

The following lemma, Lemma 9, uses the previegslt. Lemma 9 is for the case of Theorem 4 in
which the formula contains Xroperator. Assume the property to be verifiepl isuch thaép = X¢'.

So

to

L%t

A\ 4

505 5. 51008

T2

\ 4

tm-l tm

Figure 52. The two paths for Lemma 9.

98 Slicing with the Next Operator

Assume there are two next-preserving branchingiilesi paths, where a stegen one path is next-
preserving branching bisimilar to a staten the other path and all the steps bedarare stuttering,
as shown in Figure 52. Further assume that thexsffthe path starting & does not satisfy the
propertyg’, while the suffix starting &§., does, or vice versa. Assume that on the secohgdaléthe
stuttering steps have been removed, such as lythemormal slicing method, leaving oty This

will causeXq’ to evaluate tdalseatt,, whereas it evaluated te ats,, due to the stuttering steps.
This lemma shows that such cases are not poskthie paths are next-preserving bisimilar, since
there must be a certain number of stuttering stefmset,,. This holds because at some stabae the
path, one of the sub-formulas of ¢ must change its value. This occurs if either seolable step
occurs as or if s leads to another path on whigh is satisfied. In the latter case, the result from
Lemma 8 shows thalfffPathg,(s) must hold. Let’ represent the equivalent state on the second path
Since the paths are next-preserving bisimilar vépect ta, there will be stuttering steps before all
observable andiffPathsstates. Therefore, there will kestuttering steps befotg wherek is the
minimum of thex-depthof ¢ and the number of stuttering steps be&rk the formulag has arx-
depthofd and the formulg; has anx-depthof d,, then the point at whiap, changes its value, i &.
occursd - d, + 1 steps after,;. Then, as the following lemma shows, it followatth there arel
steps beforé, there must bd - d, steps beforg, ;. Using this result, Theorem 4 will show that there
are enough stuttering steps befareto ensure that the formuka’ evaluates to the same value at
boths, andt,.

Example.

The following example illustrates how tkealeptlie) - x-deptliep;) requirement ensures the correct
number of stuttering steps are befirdetp = X¢', whereg’ = Xp, for some atomic propositiop,
Assume that &.,, ¢’ is satisfied, while it is not &. Thus,s.; satisfieXp, buts does not, so at the
states, the sub-formul@ holds while ast., it does not. Th&-depthof pis 0, while thex-depthof ¢

is 2. Thus, there will be 2 - 0 = 2 stuttering stbpfores, which implies that there is 1 stuttering step
befores_s, so there is one stuttering step betfgre This satisfies the requirement that there isitt st
tering step beforg.;. (Thex-depthof ¢’ is 1, while thex-depthof ¢ is 2, so there are required to be 2
- 1 = 1 stuttering steps befcgg). [

LEMMA 9. INCLUSION OF STUTTERING NODES

For a path formulg and two paths; = <Sy, S, S, ... >andm, = <to, ty, tp, ... >,

wherer; é(p m, and3s, t, such that,, é(p 5 ands, -~ 5., and for some formule,, which is a
sub-formula ofp:

A) if T[s1) E @1 andmy[S) ¥ @1, wherej > 1, thenty > “ty,,,

wherek > min(x-deptlfep) - x-depttie,), j-1) and
B) if mi[s.1) # @1 andm[s) = @1, wherej > 1,thenty =ty

wherek > min(x-deptlp) - x-depttie,), j-1)

Proof. By structural induction over the formuta
Induction assumptiorAssume that (A) and (B) hold for the formulgsandys.

- ¢1 =y, for some state formui,.
Thenm[s4) = @1 < §aF 1 andm[s) = ¢ < § = Y.
> 1€ AP:
For Case (A):
Assumes.; = |, buts ¥ .
= 51 > §, Whereobg,(@) 1)

Preservation of Full CTL* 99

§Zptm

= to—= X tm1, Wherek > min(x-deptlfep), j-1), by criterion (ii) of
Definition45 and (1).

x-deptlfp,) = 0, sincep; € AP.

= x-depttfp) - x-deptlfey) = x-deptlfp)

= k = min(x-deptlp) - x-depttie,), j-1)

For Case (B): Similar reasoning as for Case (A)

> 1 =1, A g, for some state formulals andys
For Case (A):

Assumes.; = ; buts # 1.

S1F 1

=S§aF 11)2 ande_l = 11)3 (1)
§ ¥ Y1

= eitherg # o ors # s (2)

= eithers.; = ., ands # 1, or
§1 F s ands # Vs, from (1) and (2).

= to-—> “tn1, Wherek > min(x-depttfe) - x-depttie,), j-1),
by assumption.

For Case (B): Similar reasoning as for Case (A).

> 1 ==y, for some state formuld
For Case (A):

Assumes.; F 1 buts #),

S1F 1

= §a B 11)2. (1)
S # 1

=9 = 11)2 (2)

= to—= " tma, Wherek > min(x-deptffyp) - x-depttip,), j-1),
by assumption, (1) and (2).

For Case (B): Similar reasoning as for Case (A).

> 1 = Eg,, for some path formulg@,
For Case (A):

Assumes.; = \; buts &

§1 F P

= dm; € pathgs.;) such thatr; = ¢,
but V m, € pathgs), ma ¥ @2

Letp: = <S., &, S, @41, S+1 ... > =rUN(r3)
andp;= <S4, &, §, +1, Ge1 .. >

pil§1) = @2 butps[s) ¥ @2

100 Slicing with the Next Operator

By Lemma 8 either:
(@) da& € pysuch thabbsp(ai) anda; ¢ p, or vice versa, or

(b) Im> 0and3 g € pi{Sn] Such thabbsy(a) anda; ¢ pa(Smel
or vice versa.

S Zptm
= to(-P---> “tm1, Wherek > min(x-depttfe), j-1),
by criterion (iii) of Definitior45 and (a) and (b) above.
x-depttip) = x-deptifyp) - x-depttie,)
= k = min(x-deptlip) - x-depttie,), j-1)

For Case (B):
Assumes.; # Py buts =,
SR}
= dmz € pathgs) such thatr; = @, Q)
SR
=Vm,epathgs.y), s = @2 v 2
dms = <54 >~ w5, from (1)
Letp; = run(ms) andp, = run(ms)
Case 1p; = @3
= T € pathgs.;) andrs,
which contradicts (2), so criterion (B) holdswuausly.
Case 2:p4[S.1) ¥ @2

= pa[S1) ¥ @2 butpa[s) = @2
Using similar reasoning as for Case (A) above,

= k > min(x-depttfe) - x-deptife,), j-1)

Assume that (A) and (B) hold for the formutgsandes.

. @1 = @2 A @3, for some path formulag, andes.
For Case (A):

Assumer[S.1) E @1 but[S) ¥ @1

T[§-2) E @1

= m[S1) E @2 andmy[S.1) E @3 Q)
m[S) ¥ @1

= eithermy[S) ¥ @, Or m[S) # @s........... (2

= eitherm[S.1) E @, andmy[s) # ¢, or
m[S-1) E @z andma[s) # @5, from (1) and (2).
= to-—> “tp1, Wherek > min(x-depttfe) - d, j-1), (3)
whera = x-deptlie,) or x-deptlips), by assumption
x-deptlip;) = maxx-deptlfp,), x-deptlips)), by Definition 44
= tg-> “tma, Wherek > min(x-depttfe) - x-deptiiep,), j-1), by (3).

For Case (B): Similar reasoning as for Case (A).

Preservation of Full CTL*

101

. @1 = — @y, for some path formula,
For Case (A):

Assumery[S.1) E @ butm[s) # @1

T[S E @1

= T[S1) ¥ @20 e, (1)
T[S) ¥ — @2

=[S E @2 e 2

= to—= " tma, Wherek > min(x-depttfyp) - x-depthip,), j-1),
by assumption, (1) and (2).

For Case (B): Similar reasoning as for Case (A).

. @1 = @2 U @3, for some path formulag, andes
For Case (A):

Assumer[S.1) & @, U @3 butm[s) # @2 U @s.
T[S F @2 U @3
= dksuch thatV's € m;, wherg - 1 <i <k, m[S) F @2,
andr[s) F @3, by the definition of=
m[S) ¥ @2 U @3
= m[S) ¥ @ andmy[S) # @3
= m[S1) & @z andmy[s) ¥ @3, because otherwisg[s) would still

satisfy;.
= to-—> “tn1, Wherek > min(x-depttfe) - x-depttie,), j-1),
by assumption.

For Case (B):

Assumeri[S.1) # @, U @3 butmy[s) = @2 U @s.
m[S) E @2 U @3
= Jk>j such thatvs e m;, wherg) <i <k, mi[S) = @,
andm[S) = s, by the definition of= Q)
= eithermy[S) E @3 ormi[s) = ¢, from (1)........ (2
T[S # @2 U @3
= eitherA s such thak > j - 1, whereri[s) = or
dksuchthak > j - 1, wherery[s E@s and3i suchthaj-1<i <k
wheremy[s) ¥ @,, by the definition of=
= m[S1) ¥ @z andma[S.1) ¥ @3, from (1)
= eitherm[S.1) ¥ @, andmi[s) = ¢,, or
m[S-1) ¥ @z andm[s) E s, from (2).
x-deptlip,) = maxx-deptlip,), x-deptiips)), by Definition 44
= to—= " tma, Wherek > min(x-deptifyp) - x-depthip,), j-1),
by assumption.

] @1 = Xz, for some path formula,.
For Case (A):

Assumer[S.1) E ¢q but[S) ¥ @1

102

Slicing with the Next Operator

m[S-1) E X2

=[S E @2evveennen. Q)
T[§) ¥ X2

= M[Se) # P2 (2)
Lets A, S+1

Case 1Dbsp(a,-)
= o> “tm, Wherek > min(x-depttfp), j), by criterion (ii) of Defini-

tion 45, sinces é(p t
x-deptlfp) = x-deptlfp,) +1 3)
= to-—> “tn1, Wherek > min(x-depttfey), j-1) (4)

x-deptlip) - x-deptlip,) = x-deptlfp,) + 1 -x-deptlip,) = 1, from (3)
x-deptlfp) > 1

= x-deplfp;) > x-depilep) - x-deptifpy)

= k = min(x-deptlfp) - x-depttie,), j-1), from (4).

Case 2:~ obsy(a)

= g e, (3)

™ é(p m ande = X,

= ty-—> “tym, Wherek > min(x-depttie) - x-deptlfep,), j), by assump-
tion that Lemma 9 holds fas,, with (1), (2) and (3).

x-deptlip;) = x-depthfp,) + 1
= x-deptlie) - Xx-depttiep,) = x-deptifep) - x-deptties) + 1
= o= " tma, Wherek > min(x-deptifep) - x-depttp,), j-1)

For Case (B):

Assumer[S.1) ¥ @1 butmi[s) = @1
T[S0 # X2

= T(]_[S>> F= @2 ciienenns (1)
m[§) E X2
= T(]_[S+1>> (0 S (2)

The remainder of this case is the same as for (@gse

O

Theorem 4 is the main result of this sectidmctvdemonstrates that two transition systems which
are next-preserving branching bisimilar presereestime CTLformulas. The proof is divided into
two sections: a proof that if two states are negserving branching bisimilar, they preserve CTL*
state formulas and the same for two next-presetviagching bisimilar paths and the preservation of
CTL* path formulas. Recall that one of the CTL*tetéormulas i€¢, whereg is a path formula.
This is where the result of Lemma 7 is used, tavsthat there will always exist a matching path in
the other system. The second section, concerningriof of the preservation of path formulas, is
where the&X operator is examined, since it is a path operatos. section utilises the results of Lemma
9, as explained previously.

Preservation of Full CTL* 103

THEOREM 4. NEXT-PRESERVING BRANCHING BISIMULATION PRESERVES FULL CTL*
For two doubly-labelled transition systesandT,, T; éw =My Ty foralpe
CTL*).

Proof.
AssumeT; éw To.

For this it is required to show that:
(i) For all state formulag € CTL* and states; € T, andt e T,, 5 éw t=(sFEYy < t=yP)and
(i) for all path formulagp € CTL* and pathst; andm,, m; é(p = (M E @ & M = @).

(By induction over the formula).

Assume that state formulgge CTL* andy, € CTL* are preserved b&wlandéwz, respectively,
Le.TiE 1< ToE P andT E ¥, © ToE Yo

State formulas:

SinceZ,, = £, all € CTL are preserved, by Theorem 1.

For a formulap which contain; if:
= pe AP: pe CTL
Therefore) is preserved.

" b= A Y
TiEY
S SEY
< S FE P ands E o
< 1o E Py andty & ,, by assumption.
SthEY
S T=Ey

"y =-yu
TiEY
S sEY
< S Py
< 1o B Py, by assumption.
SthEY
< TEY

= = Eg,, for some path formula;.
TiE @
< Jm e pathgsy) such thatr; = @,
< dm, € pathgty) such thatr, = ¢,, by Lemma 7.

104 Slicing with the Next Operator

@Tz'ZE(pl
<:>T2':Ll)

For path formulas:
Assume statement (i) holds for state fornjuland statement (ii) holds for path formu-
las @y, @2, andeps. Let E(P 0, T4 é(P 1, andmy é(P ,. Letfirst(my) = s andfirst(my,) = to.
1 2 3
Assumer; = ¢ andm, ¥ ¢. The reverse case holds using the same reasoning.

> ¢ =1, for some state formulé:
T =@
S SEP;
S to = Py, Sinces éwlto, by assumption.
S thEYP

<:>TF2|:(P

¥ Qo=@ A Q2
T = @1 A @2
< m E @ andm E @p
& T, E @ andm, E ¢, by assumption
S M FE QLA @2

> 9=
T = =@
< T F @1
< T, @y, by assumption
S M E @

> 9=p1U
mE @U@
< Jksuch thatv's € m;, where 0< i < Kk, mi[S) E @1 andmi[S) = @2
V§ e m, 3t € m such thal Xt

= Jtce m, such thas £ ¢k

T[S E @ iff Tt = @2, by assumption. Q)

Vs, 3t; € @, such thag é(Plti

=Vs, t, m[S) E @1 & [t = @1, by assumption. (2)
= @2 F @1 U @, by (1) and (2).

> Q= X(pl
Proof by contradiction.

el= X(pl andr, ¥ X(P]_
= T(]_[Sg_>> =@ and'ﬂ'g[t1>> F= Q1 cevenenns (1)

Next-Preserving Branching Bisimulation of Behavioees 105

Lett; bet,, andty bety, .

™ £, T, by assumption.

= 3j > 1 such tha =, tr, by Definition 47. 2)
= m[S) ¥ @1, by assumption. 3)
S Z ¢, to, by assumption (4)

Lettns B, tm ands., & S

=5 =" 55 anda = by ands., =, tm, by (2), (4) and criterion (i) of Definition
45 o, (5)

= 5 =, 41, by transitivity of X,

= m[S.1) E @1, by assumption.

=ty > “tm1, Wherek = min(x-depttie) - x-deptliep,), j-1), by (1), (2), (5) and

Lemma 9.
x-deptlfp) - x-deptip;) = 1
= k=min(1,j-1)
Therefore there is at least one step ftpto t.,1, SOt is not the first step.
= T, E X1

which contradicts the assumption.

5.4 Next-Preserving Branching Bisimulation of Behavior Trees

In the previous section, a technique was preghdsr producing reduced models that preserve
properties containing threextoperator, by inserting extra stuttering nodesetain locations in the
transition system. This section discusses howaiatify such locations in a Behavior Tree model and
how to locate suitable extra stuttering nodes.

5.4.1 Locations Requiring Extra Nodes

For a given BT control flow graph, the firggstis to identify the states which are followedaby
observable transition (criterion (i) of Definitigtb) and those which are followed by two or more
transitions (criterion (ii) of Definition 45). Lotiag observable transitions is simple: every olesas/
transition in the transition system correspondasitobservable node in the tree. Therefore, tdhgatis
criterion (i), for every observable node there nest-deptlip) extra stuttering nodes in the slice,

whereg is the property to be verified.

Finding states that satisfy criterion (ii) & 80 straight-forward. It might appear that thenehing
locations would correspond directly to branchingmin the Behavior Tree, but this is not always
the case. There are some branching locations inehsition system which do not correspond to an
explicit branching pointin the tree. An examplého$ is a selection node. It implicitly represdnts
branches: the branch where the selection condiititets and the branch where it does not, leadiag to
termination state. As well as this, branching naddise Behavior Tree do not always correspond to
locations where an extra stuttering node must dedalue to the requirement in criterion (i) tihat
state must satisfgliffPaths For example, consider concurrent branches. Evemwne branch is
chosen, it does not prevent the other branch feaowding as well, since they are parallel threads.
Any observable nodes in one branch are therefamhadble omll corresponding paths in the transi-
tion system.

106 Slicing with the Next Operator

The Behavior Tree constructs which lead to ¢nang in the transition system are: alternative
branching, concurrent branching, thread kills, refems, reference nodes and conditional nodes.
Each of these will be discussed below.

Concurrent branching In BT control flow graphs, concurrent branchowgurs when a nodehas
more than one child, each connected by a concurrent edge. Obviously, the state imniegliafter

n has executed has multiple branches in the transistem. However, this is not the only set of
branches in the transition system caused by theucamt nodes. Every node in each thread can be
interleaved with the nodes in the other threaderAfach node has executed, there are several possi
ble choices over which node can execute next. Tovereeach state that results from one of the nodes
executing will have multiple branches.

Despite this, none of these states satisfgrait (ii) of Definition 45, as they do not satishe
diffPathsrequirement. Concurrent branches never causehbelranches to terminate, unless there
is an explicit thread kill node or if one of theabches ends with a reversion which terminates the
other threads. These cases can be identified byingahread kill and reversion nodes, as described
below. The definition ofliffPathsrequires that there is an observable node on athetipat either
cannot execute on the other path at all or carvemtiie within the same number of steps. However,
concurrent branching allows full interleaving setitan Therefore, the situation requireddiffPaths
never occurs. If an observable node can be redghedecuting one of the concurrent branches in the
Behavior Tree, itis always possible to find a gadim the other branch that will also lead to e
observable node executing, within the required tifiteerefore there is no need to add stuttering
nodes before concurrent branching points.

Alternative branchingThis is different to concurrent branching, beeanisce the choice of which
branch to take has been made, the other branchés wérminated. There is no interleaving behav-
iour between the nodes in the branchesnlbet a node with more than one child, such thathiie
dren form an alternative branching group. The stdye which has multiple outgoing transitions due
to this branching group is the state immediatelgraf has executed, where the choice of which
branch to take has not yet been made. Once a binasdieen chosen, the other branches will termi-
nate. This satisfies the requirement that these isbservable node in one path of the transitisn sy
tem that is unreachable via the other path.Thezefdternative branches correspond to locations
where stuttering nodes are necessary. There aswasre the other paths are still reachable agich
if the branches have reversions which cause temative branching point to be reached again. Since
this is not always the case, it is safer to alveaigstuttering nodes to alternative branching polfit
the other branches are reachable, the unnecetgsayisg nodes would not significantly increase th
size of the slice.

Thread kill nodeswhen a thread kill node executes, it termindteghread in question. Thus, in the
corresponding transition system, the state afeethiread kill node executes leads to a path from
which the terminated thread is unreachable. Aptheious step, the thread is still reachable, lsau
there are at least two possible branches: thedlkibatep or a node in a concurrent branch. Conse
quently, stuttering nodes must be added beforadhki#l nodes.

Reversion nodefkeversion nodes seem to be likely candidatethieitype of behaviour, because
after the reversion executes, some threads arentdad. However, the terminated threads are still
reachable, since after the reversion is takemgraegoint the threads will be re-started. Therefore
there is no need to include extra stuttering nbaésre reversions.

Reference nodeReference nodes are different to reversions guiiyrbecause they do not cause any
threads to be terminated. As a result any thredwishwvere executing in parallel to the reference
node will continue to execute. Nodes in alterndbiranches to the reference node would have already
been terminated when the alternative branchingelvais made prior to reaching the reference node.
Hence it is not necessary to include extra stuganodes before reference nodes.

Next-Preserving Branching Bisimulation of Behavioees 107

Conditional nodesAs discussed in Section 3.1, conditional nodesespond to two possible transi-
tions in the transition system: the branch whegectindition holds and the branch where it does not.
Consequently, at the step before the conditiomatuated, the two paths are still possible, buraft
one is chosen, the other path may be no longeitp@sSince the verification property can never be
referring to a value on the implidalsebranch of the condition, the only relevant casehisre the
false branch has been chosen andrtlesbranch is no longer reachable. For guard and sgnisa-

tion nodes, even when the false branch has beeewchthe true branch can still eventually be
reached, since the false branch is a loop batletodnditional node. Thus, the only conditionalesd
which can prevent a path from being reached aeets@h nodes, where the false branch leads to the
END state. This is the only case which requirestixel stuttering nodes.

The following lemma formalises the previousdsion, showing that the only cases which pro-
duce branches where one path leads to an obsestaplhat is unreachable from the other path are
alternative branches, thread kill and selectionesoth the lemma, the temaachableis used to
denote that a node can be reached on the othewjthih the required number of steps.

LEMMA 10. BRANCHES IN BEHAVIOR TREES
LetS = (S, AP, A, .4, VN, — 1) be a doubly-labelled transition system. heginching={n|3s,
s,s’, " €S wheres N, s —s’ands —s”and s’ # s and da nodane N, such tham

is reachable frors” but not froms™ and obg,(m)}.
Then, Vn € branching either:

(a) 3 ny, np such thaparen(n,) = paren{n,) = n andalt(ny, ny), or
(b) flag(n) =threadKill or
(© typgn) = selection

Proof.

Letn be a node such thass, s, s’, s € §; wheres N S —s’ands — s”and s’ #5S".
There are several cases:
Case 1:
paren(n,) = paren{n,) = n, andalt(n, n,),
which satisfies (a).
Case 2:
condn, n,) andflag(n,) + threadKill andflag(n,) + threadKill
= mis reachable from, andn,,

= mis reachable frors’ and s™'.

Case 3:
condn, n,) andflag(n,) = threadKill
which satisfies (b).

Case 4:
condn, n,) andflag(n,) = reversion

Let n, be a node such that threadgn,) which is terminated b,
= v ethreadgtarge(n,))

= n, € des¢targei(n,))

son,can be reached again.

= mis reachable from, andn,,

= mis reachable frord’ and s”.
Case 5:
conditiona(n)

108 Slicing with the Next Operator

Case 5.1:typdn) + selection
Lete =edgén, child(n,0)), wherdabel(e) =false

= e=-edgén, n), i.e. the edge loops backrno
= mis reachable from, andn,,

= mis reachable frord’ and s.
Case 5.2:typdn) = selection
which satisfies (c).

O

A setextrgy(G,, G;) contains the stuttering nodes that must be afttesrigiven BT control flow
graphG; and its sliceG,. For every observable node, alternative brancbiogp, thread kill and

selection node, there mustbdepti{¢p) stuttering nodes iextra,(Gi, Gy), or at least as many stutter-
ing nodes as existed in the original model.

A functionnodes_nexis introduced in the following definition. It retis the set of nodes that
encompass the final next-preserving slice. Thisides the nodes from the normal slice as wellas th
nodes in thextraset.

DEFINITION 48. NEXT PRESERVING SLICE SET
For a sliceG, = <N,,E,, start,, end> produced from a BT control flow gragh = <N,E;, start,

end> for a formulap, the slice set that preserves rﬂwtoperatornodes_neg(Gl), is defined as:
nodes_nezg(Gl) =N, U extra(P(Gl, Gy).

5.4.2 Finding Extra Stuttering Nodes

The next step is to locate a set of suitabtkeado be included back into the slice. bt the node
for which extra stuttering nodes must be includefibife it. The nodes should all be stuttering and
should be able to execute immediately befoidéthere are stuttering nodes in the slice thatys
execute befora, i.e. on every trace, then these nodes shoulélbeted instead of nodes that only
execute befora onsometraces.

If n has a parent which is stuttering and is not ajré@the slice, the parent is a suitable choice.
The parent is guaranteed to be able to executednef@®n the other hand, nodes in concurrent
branches may execute befareut are not guaranteed to always do so. If aestngf parent existed in
the original model, it always had to execute beforéa concurrent node is included into the slice
instead of the parent, then the slice would haaees where no stuttering node executes befae
trace which was impossible in the original modéle parent should therefore be the first choice of
which stuttering node to include. For some formuiagre than one stuttering node may be necessary.
In these cases, if there are more ancestors wiacktattering, these should be included next.

If the parent is not stuttering, or there areamough stuttering ancestors to form the setdésto
be included, the next choice is to include coneimedes. In most cases, the nodes in parall@dbre
can be interleaved in any order, so a concurrede ntay execute befoneor after it. There are traces
wheren executes first, unlike for the case of ancestdesoNevertheless, assuming that all stuttering
ancestors have been already included, this is piatldem, since the original model must have also
had such traces. The goal of including the stuitesteps in this case is to preserve at leastfdahe o
traces in which the concurrent node executes imat@lgibeforan. The only difficulty lies in the fact
that some concurrent nodes may not be able to exbetoren due to some dependencies. For this
reason, when including concurrent nodes, their niggecies must also be considered. If any nodes
have no dependencies, or only have the same depreslas itself, these should be the first choic-

Next-Preserving Branching Bisimulation of Behavioees 109

es. (If a node has the same dependencigslzen those dependencies must have been sasisfoed
nis able to execute).

If all concurrent nodes have dependenciesnibt easy to determine statically which onesheill
able to execute at the right time. A useful chaméstic of Behavior Trees is that the nodes in any
given thread cannot execute until their ancestave lexecuted, so the root node of a thread must
execute before any of its descendents. Sincenhe&o locate nodes which can execute befpite
is unnecessary to search further down a threadhieanot nodes. If a node further down can execute
beforen, the root node can execute befors well. The reverse is not always true, becaesde-
scendents may have additional dependencies whealoth does not have. If the original model had
traces where a parallel stuttering node executieddag it is sufficient to include any root node of a
parallel thread which has no dependencies othetltiuge that has. If there are not enough of those
nodes in the tree, the next choice is to includé modes which have dependencies. Since it is not
possible to determine which of the dependency tiandi will be satisfied, each of the root nodes
must be included in the slice. This way, if onéhefim is able to execute befarét will be able to do
so in the slice. Including some nodes which areabtit to execute beforewill not change the out-
come of the verification; it will only cause thécsl to be more imprecise.

A functionslice_nexts introduced in the following definition. It retas the transition system of the
slice that contains the extra stuttering nodesasribed.

DEFINITION 49. NEXT PRESERVING SLICE
LetB be a transition system corresponding to a BT obfitw graphG andSbe a transition system

such thaS= slicey(B) for some formula. Then, the functioslice_nex}(S returns the transition
system of the slice created from the slicenseles_neyf(G).

5.4.3 Proof of Correctness

In this section, a proof of correctness wilpipesented which shows that if extra nodes aretatse
into a slice of a Behavior Tree according to théhme described in the previous sections, the result
ing slice will be next-preserving branching bisenito the original model. Using the results of prev
ous chapters, it is easily established that tise gliven byslice _nexis related to the original model
by a branching bisimulation with explicit divergend his satisfies the first critierion of Definitid5.

The remaining two criteria also hold if stutterimgdes have been included using the method de-
scribed in this section.

THEOREM 5.
Let B be a transition system corresponding to a BT obfiaw graph and be a transition system

such thaS= slicey(B) or S=slice_infy(B). Then, the transition systefir slice_nex(S) is next-

preserving branching bisimilar ®i.e.S éq, T.

Proof.

LetS = (8, AP, A, 4, Ni,— 1) andT = (8, AR, %, 5, N,— ») . In the following, lets, S,
S S, ... Fange oves; andt, t', to, t5, ... range oves..
There are three criteria for next-preserving bramghbisimulation, as given in Definition 45.

Criterion (i):
If S=slicey(B)

= S2£B, by Theorem 2.
Otherwise, IfS= slice_infp(B),

110 Slicing with the Next Operator

= S= &', whereS' the transition system such ti&it= slice,(B), by Theorem 3.
S’ £ B, by Theorem 2.
= S2 B

Criterion (ii):
Vs, s, t", such thats” R t",if s —/ s —% & and obsgy(n), thent -~ t', where

t' R s andk = min(j, x-deptlfp)).
This holds, by the definition axtra

Criterion (iii):
Vs, s’ t’, suchthats R t ands’R t”,if s —=! s—> s’and
s ——> 3", wheres’ #5” and Jae A such thabbsp(a) anda is reachable frorg’ but not
froms”, then t —~* t, wherek> min(j, x-depttfe)).

Ifs - g Y% g ands % S”, where s’ #5s”,

then either: (wherg, is the node that executed immediately befre

By Lemma 10, the only cases are:
(&) 3 ng, Ny such thaparen(n,) = parentn,) = n andalt(n;, n,), or
(b) flag(n) =threadKill or
(c) typgn) =selection

= Jknodes inV, that can execute immediately beforavherek > min(j, x-deptlfy)), by the
definition ofextra

O

Theorem 1 Inthis chapter, it has been showmthd-preserving branching bisimulation guarantees
the preservation of all CTlformulas, including the next step. This resultlsanised for any applica-
tion that requires all CTLformulas to be preserved. The user only has tadstrate that a next-
preserving branching bisimulation exists for th&io models. Note that since this method involves
including additional nodes, it is unnecessary @omiulas which do not contain tleoperator. For
these formulas, it would be better to use the nbsliting algorithms presented in previous chapters
Furthermore, this chapter has demonstrated thexttgpmeserving branching bisimulation holds be-
tween a Behavior Tre@ and a slice given bglice_nextB).

CASE STUDIES

This chapter demonstrates the techniques pegsrprevious chapters on two case studies. Sec-
tion 6.1 describes how the slicing algorithms Haeen implemented as part of an existing Behavior
Tree editor. The subsequent sections describadesstudies. For each case study, an existing Behav
ior Tree was used, along with a set of propertiggetmodel checked. A set of slices were construct-
ed, one for each property, using the algorithmergia Chapter 3. The time taken to verify the slice
was then compared with the time taken for the wailgnodel. The two case studies were selected in
order to demonstrate the use of slicing on diffetrgmes of models, where the Behavior Trees have
different structures. The first case study, a rpun@p, is typical of many embedded systems, which
have a software controller and hardware sensoraetodtors. The components communicate with
each other via message passing. This case stdeyasbed in Section 6.2. The second case study is
a hospital information system. It is a typical daise system, which stores information about various
users of the system. The accessing of informasi@overned by a set of access control rules. The
details of this case study are given in Section 6.3

6.1 Slicing Implementation

The slicing algorithm presented in Chaptersiieen implemented by the author. The slicer oper-
ates as part of the existing Behavior Tree ediied Integrare (Wen, et al., 2007). Integrare is a
Behavior Tree drawing editor which also includesctionality such as extracting keywords from
textual requirements, linking to a simulator antbenatically translating Behavior Trees into the
model checking languages SAL (de Moura, et al.42@Mhd UPPAAL(Larsen, et al., 1997). A
screenshot of the Integrare tool is given in FigieThe new slicing component links to the exggstin
SAL translator, which is a function of IntegraréleTSAL translator is described briefly in Section
2.3.3. Full details of the translation processtmafound in Grunske et al. (2008). Figure 54 shaws
example of the translation output given by the $vanslator.

The slicing component was written in Visual G#FC), to allow it to be compatible with the
existing Integrare source code. The slicer operatesrding to the algorithms given in Chapter 3. It
takes a list of components as an input. Theseharedmponents mentioned in the temporal logic
theorem to be model checked. The slicer then autoatig creates a dependence graph for the select-
ed Behavior Tree. The dependence graph is storadnmory, not explicitly shown to the user. Using
the list of components, the nodes that form traéngjicriterion are then identified. The slice isrh
created by traversing the dependence graph stattthg criterion nodes. The nodes collected durin
the traversal are re-formed into a syntacticallyexi Behavior Tree. The slice is then passeddo th
translator, which treats it as an ordinary BehaVime and translates it into the requested model
checking language.

The overall systemis illustrated in Figure Bbe new section of the tool, the slicer, is shawa
dotted box amidst the existing functions. Theseepts are not limited to the Integrare tool; itgynm
demonstrates that the slicing algorithms of thésihcan be implemented. In a similar manner, the
slicing algorithms could be implemented to integfadth any Behavior Tree editor, such as the latest
Behavior Tree editor TextBE (Myers, 2011).

112 Case Studies

3 Solution Connect Design Edit Wiew Window Tool Help S =ilfe
N@do~sBE | RE| 0
e &S o E A (B W A BT

il S0 SEER
Soition Bxploreihidon : |||I||ﬂ g|
[solution: my HIS [4\ %
%Sysrem — EEg
"\"\J\Aersmn 10 = A
'v;lwrs'on?k \.,.Dﬂ ;.;M
. Requiterments 1Da Dactors R e ahager
Components e [DDoctor : Doctors D3+ | [ssnddMedicalRecardsss
B Z
i
5 ®)
& &
Log)=)
(4 b
AP G lE T LS s AENT =0 ES0ES® i
I_ 4

Figure 53. A Screenshot of the Integrare Drawing Pane

=

HCONTERT= ”~
BEGIN

AP Syskem: TYPE={alP_Swstem_init};

C: TYPE={c_operate,c_palling};

Pump: TY¥PE={pump_idle, pump_pumping};

D1: TYPE={d1_clear,d1_hiocked}; i b

behavior MODULE=

BEGIN

INPUT extInMsg_D1_blockage, extInMsg_D1_cleared: BOOLEAN
LOCAL

alP_System: AIP_Swskem,

i,

pump: Purnp,

di: D1,
InEInMsg_pump_skartPump:BOOLEAN,
intInMsg_d1_query: BOOLEAN,
intInMsg_purnp_stopPurnp:BOOLEAN,
intInMsg_c_pumpFinished:BOOLEAR,
intInMsg_c_clear:BOOLEAN,
intInMsg_c_blocked:BOOLEAN,

pcl: [0..2],

pez: [0..2],

pc3: [0..3],

ped: [0..3],

pcs: [0..2],

pce: [0..3],

pc7: [0..3],

A

o= |

T D_.;I:
o
&
£
#
®
®,
=)
[l

el IRl MY olini

Ldbxi=0

Save translation
Parsing Time (ms) ¢ I 1}
Translation Time tms) i I i Save times

Details about BT (randorrly generated BT's only) |

- dlx-<= D1DB

Mumber of nodes I Ii

Mumber of macros | |
Hurnber of b h:I S e o
Hmber ol Branches MNumber of thread kills : I— P B & e A7 G E B
Mumber of reversions ; I CLOSE e

| o

Figure 54. Screenshot Showing Translation Pop-up Window.

Mine Pump Case Study 113

J Graph Traversal Re-formin
Slicing Options |::> Eunction I:> Tree Functi%n
Dialog Box I

Integrare
Slicer

BT Modei- - =-—-=-—-=-—-=—=-=—=-=-=—==—==—=-=——-=-——----- 7
Behavior Tree |::> Dependence Graph :
Drawing Editor ! Creator |
I I
! Dependenc !
, Graph H !

|
Criterior ! Slice se :
1
|
I
|
1

L e e e e e e e e e e = == _——
Slice Behavior
Tree

Translator

External Ak_‘
Model < Translator <::| Parser

Checker SAL or
UPPAAL
mode

Figure 55. The Slicing Tool as Part of Integrare.

6.2 Mine Pump Case Study

This section presents a case study of a mimpptaken from Grunske et al. (2011). The case/stud
was selected because of its structure which is ammicomany embedded systems, where a software
controller makes decisions and interacts with hardveéensors and actuators. The system also re-
ceives input from the environment. Two more systemtise same style are given by Grunske et al.
(2011).

The case study models a system which contrelarhount of water in a mine using a water pump.
Two sensors indicate the current level of the watéyw water sensor indicates when the water has
reached a low level, while a high water sensocaigis when the water has reached a high level. The
pump automatically activates when the water is,hpgimping the water out until it is a normal level
again. Similarly, when the water reaches a lowlatie pump automatically turns off. There is a
mechanism to allow a human operator to controptivap, as long as the water is between the high
and low levels. A supervisor has higher authokigy or she may turn the pump on or off regardless of
the level of the water. Three other sensors motti@menvironment for health and safety reasons.
These are: an airflow sensor, a ghhethane) sensor and a CO (carbon monoxide) sdhsoe
methane reaches a critical high level, it is imfpeeahat the pump be turned off and remain unaepera
tional until the methane levels have dropped baektormal level. The other safety precautionds th
if the airflow becomes critically low or the CO ks become critically high, the personnel must
immediately evacuate the mine. In this case, thgerymust trigger an alarm to warn the personnel.

6.2.1 Behavior Tree of the Mine Pump

The Behavior Tree of the mine pump is designeal style where each component is modelled
separately in individual threads. This reflects¢bmponent-based structure of the actual system.
Communication between the threads is accomplistied message passing. The full Behavior Tree

114 Case Studies

is too large to be shown here, so its basic stredésugiven in Figure 56. The tree consists ofatev
main threads; one for each of the components, pemyl environmental aspects interacting with the
system: the software controller, pump, supervisperator, personnel, Gldensor, CO sensor, air-
flow sensor, low water sensor, high water senstlamenvironment. The controller maintains inter-
nal representations of each of the sensors amulithe, in order to keep track of each component’s
status. The controller thread is sub-divided intoaan thread which describes the behaviour of the
controller and several threads which continuallgotithe state of the sensors and pump and update
the controller’s internal representations of them.

Initialisation

Controller sub-threads " | o b
for monitoring sensors ersonne . perator ump
Thread Supervisor Jhread Thread

VAN

Environment

Controller Thread
Thread
CH, Sensor CO Airflow Low Water High Water
Thread Sensor Sensor Sensor Sensor
Thread Thread Thread Thread

Figure 56. Overview of the Mine pump Behavior Tree.

A part of the controller thread is shown inlig)57. The main responsibility of the controlteta
control the pump by sending requests for it to tumror off as required. The controller thread is
guarded by a node that checks whether thei€&t a normal level. If so, the pump can opei&te.
controller then decides its next actions dependimghether the pump is currently on or off. Ifit i
on and the water level has reached a low levekdhéoller sends a message to turn off the pump.
Alternatively, if the operator requests to turnta pump, the controller checks whether the water
between the high and low levels and if so, semdessage to turn off the pump. The supervisor may
also request to turn off the pump. (This behavima not been shown here to save space). This action
is allowed regardless of the current water levieé behaviour of the controller when the pump is off
IS the exact opposite: the controller sends a rgedsaurn on the pump if either the water levedas
high, the supervisor requests it or the operatpuasts it and the water level is normal.

The supervisor and operator threads are gnittas Both of them non-deterministically decide t
turn on or off the pump and send requests to theater as required. Neither of the threads penfor
any functions if the controller decides that thenpumust remain non-operational due to high methane
levels. The personnel thread simply waits to beuoted to either enter or exit the mineshaft. €hes
messages are sent by the controller, dependirfgeastdte of the CO and airflow sensors. There are
no output message nodes in the personnel thread.

Mine Pump Case Study 115

Controller
[pump not operating]

A SN

Controller Sub-threads for
??7H, Sensor=normal??? monitoring the
sensors and pump.
4
Controller

[pump may operate]

/-\

Controller Controller
?pump=on? ?pump = off ?

!

Further behaviour n shown hert

Controller
?LW sensor = water low ?

Controller
Controller > supervisor_off request <
<turn_off _pump > \l,
Controller Further behaviour
Controller A > operator_off_request < not shown here.
[pump may operate]
Controller

?HW sensor = water not high?

Controller
?LW sensor = water not low?

Controller
< turn_off_pump >

Controller A
[pump may operate]

Figure 57. Part of the Controller Thread

The five sensor threads are all almost idelntitzch waits for messages from the environment.
After updating the state to reflect the environrabohange, each sensor then sends out a message to
the controller to inform it of its change in stal@ese actions all occur atomically. For example, t
CO sensor, shown on the left of Figure 58, changake high CO state when it receives the

116 Case Studies

high_CO_leveinessage from the environment and tarttiemal COstate when it receives ther-
mal_CO_leveinessage. It then sends out the mesdaglesCO _detecteandnormal_CO_detected
respectively.

The pump thread is also very similar to thessees) except that instead of responding to messages
from the environment, it responds to messagestinernontroller, requesting the pump to turn on or
off.

The environment thread represents the extemv@onment. It is divided into four threads, repre
senting the methane, the airflow, the carbon mateand the water in the mine pump. External input
messages model the environmental changes. Eachabigut message causes a change in state of
one of the environment attributes. Additionallynassage is sent out to the corresponding sensor to
inform it of the change. This occurs atomicallyptevent erroneous behaviour caused by interleav-
ings with other threads before the message hasdeeerPart of the environment thread describing
the carbon monoxide is shown on the right of Figg@&eNote that theigh CO_levebutput message
corresponds to the input message the CO sensaitiag\vfor.

CO Sensor
[Normal CO] Environment
/-\ >> CO high <<
CO Sensor CO Sensor
> high_CO_level < >normal_CO_level < .
Environment
[CO :=high]
CO Sensor CO Sensor
[high CO] [normal CO] Environment
< high_CO_level >
CO Sensor CO Sensor \l/
< high_CO_detected > <normal_CO_detected > Eurther behaviour
not shown here.
CO Sensor => CO Sensor =>
> normal_CO_level < > high_CO_level <

Figure 58. CO Sensor Thread and Environment CO Thread

In (Grunske, et al., 2011), this mine pump B@édralree was used for Failure Modes and Effects
Analysis (FMEA). However, the model used here dostsome modifications in order to more accu-
rately reflect the requirements. The most significdnange is that in the version in (Grunske, .et al
2011), when the pump is turned off due to high muegHevels, the supervisor can still turn it batk o
whereas in this version, the pump remains non-tipea until the methane returns to a normal level.
Due to these differences, the model checking tignesn in (Grunske, et al., 2011) are significantly
different to those given in the next section.

6.2.2 Slicing and Verification of the Mine Pump

There are three safety properties which themimp must fulfill. If the methane reaches a-criti
cally high level, it is dangerous to continue ofiagathe pump so it must be switched off. If the ai
flow reaches a low level, or the carbon monoxi@ehes a high level, it is unsafe for the persannel
the mineshatft, so they must evacuate. These prepbeve been formalised as temporal logic theo-
rems as follows:

Mine Pump Case Study 117

Thl. G (environment_CH, = high = F(pump = off))
It is always the case that if the methane is hegbntually the pump will be off.

Th2. G (environment_airflow = low = F(personnel = notInMineshaft))
It is always the case that if the airflow is l@ventually the personnel will not be in the
mineshatft.

Th3. G (environment_CO = high = F(personnel = notinMineshaft))

It is always the case that if the carbon moneischigh, eventually the personnel will
not be in the mineshatt.

In (Grunske, et al., 2011), the properties viemmalised slightly differently, with nestedbpera-
tors instead of theoperator in each theorem. Using those formulagptimp is required to turn off
within a certain number of steps and similarlytfa personnel in the mineshaft. The weaker forms of
the theorems, as shown above, have been chosein beder to demonstrate the application of the
normal slicing algorithm presented in Chapter 3haut having to add extra nodes according to the
method given in Chapter 5.

The first step is to create the dependencyhdi@pthe mine pump Behavior Tree. This can be re-
used for each of the theorems. The dependency grapdated internally by the slicing tool. Within
each thread, there are control dependencies ttisaland external input nodes. There are no data
dependencies in the model, but there are intelderdapendencies between the main thread of the
controller and the sub-threads which update thewsattributes of the controller. There are messag
dependencies between many of the components.tinytar, nodes in each sensor thread are mes-
sage-dependent on some nodes in the environmeatitirNodes in the controller thread are mes-
sage-dependent on nodes in each of the sensaitshasavell as the supervisor and operator threads.
This reflects the role of the controller, whictiasmonitor the state of these other components and
control the pump accordingly. There are no syndsation dependencies. Finally, there are termina-
tion dependencies caused by some of the reverdiariateresting example of this is the reversion
which executes after the controller learns thatrtethane is high. Its target is an ancestor of #ile
controller sub-threads, so when the reversion @gecall of those threads are terminated. Norteeof t
controller's behaviour can be re-started untilitfethane is detected to be at a safe level again.

Theorem 1

The next step is to locate the nodes thateilh the slice, by performing backwards traverstls
the dependency graph starting at the criterion siddensider the first theorem. The slicing criterio
is {Environment_CH,, Pump}. Therefore the variables of interest are the pangbthe attribute repre-
senting the methane in the environment. The aritenbdes are any state realisations which modify
either of these variables. In this Behavior Trlera are four such noddésimp[off], Pump[on],
Environment[CH, := high] andEnvironment[CH, := normal].

Some of the relevant dependencies are giv&abite 2. The criterion nodes are shown in italics.
The two environment nodes only have control depecide to the external input nod&sriron-
ment>>CH, high<< andEnvironment>>CH, normal<<. The external input nodes do not have any
further dependencies, so the traversal ends thiee@ump [off] node has a control dependency to the
internal input nodeBump>turn_off_pump<. This in turn has message dependencies to forg-cor
sponding output message nodes in the controlieathmwhich have each been labelled with a number
in the table to avoid ambiguity. As shown in thetcoller thread in Figure 57, the controller sends
these messages in response to the state of thedtmmsensor or according to requests made by the
supervisor or controller. The message is alsoittre CH, levels are high. The dependency chains
starting at eaciontroller <turn_off_pump> node can be seen in the table. The finst_off_pump
node leads to nodes in the low water sensor aricbenvent threads. The other tiwon_off pump
nodes have dependencies to nodes in the supeavidaperator threads. (The dependencies of the
supervisor and operator nodes have not been shiothie table).

118 Case Studies

The final slice set contains most nodes irptlp, supervisor, operator, low water sensor, high
water sensor, environment_gahd controller threads. In the controller threhd main operation of
the controller is included in the slice set, ad a®&the threads responsible for monitoring thesiaf
the CH, low water and high water sensors and the pumpeN the nodes in the personnel,
env_airflow, env_CO, airflow sensor and CO senlsads are in the slice set. This is intuitively
correct, as there is no interaction from these @mapts that causes the pump to turn on or off.

Node Dependent on Dependency
Environment [CH, := high] Environment >> CH, high << cd
Environment [CH, := normal] Environment >> CH, normal << cd
Pump [off] Pump > turn_off_pump < cd
Pump > turn_off pump < Controller < turn_off pump>1 md
Controller < turn_off _pump >2 md
Controller < turn_off _pump >3 md
Controller < turn_off pump >4 md
Controller < turn_off_pump >1 Controller ??2W sensor=low??? cd
Controller ??2W sensor=low??? Controller [LW sensor:=low] id
Controller [LW sensor:=low] Controller > water_detected_low< cd
Controller > water_detected_low< LW Sensor < water_detected_low > md
LW Sensor <water_detected_low > | LW Sensor > water_low < cd
LW Sensor > water_low < LW Sensor > water_not_low < td
Environment < water_low > md
Environment < water_low > Environment >> water below limits << cd
LW Sensor > water_not_low < Environment < water_not_low > md
Environment < water_not_low > Environment >>water within limits << cd
Controller < turn_off_pump >2 Controller > supervisor_off _request < cd
Controller > supervisor_off _request< | Supervisor <supervisor_off_request > md
Controller < turn_off_pump >3 Controller ??2W sensor=not_low??? cd
Controller ??2W sensor=not_high??? cd
Controller > operator_off_request < cd
Controller > operator_off request < | Operator < operator_off request > md

Table 2. Some of the Dependencies Relevant for Th1l of the Mine pump

Next, the reversions and reference nodes mnauaditbed to the slice if necessary. If all of there
sions and reference nodes were added back tadbgtlse final slice would contain the same number
of interleaving threads as the original model. Etrenthreads which do not contain any relevant
nodes, such as the airflow sensor thread, would ttakemain in the slice due to their reversions.

Further reductions can be obtained using tpeoagh presented in Section 3.4.3 for reducing the
number of reversions and reference nodes. Usiagifiroach, several reversions and reference nod-
es can be removed from the mine pump slice. Athe$e are nodes causing divergence, due to infi-
nitely reverting inside unnecessary threads. Athefse threads start after the same node, the root
nodeMine pump>>Ready<<. None of these diverging reversions and referandes have any con-
trol dependencies to nodes already in the slicas;they can all execute in the same traces agd onl
one of them is necessary. In this case, a reveirsitve personnel thread has been chosen as the one
to remain in the slice.

Similarly, there are sub-threads of the colgrahat are not necessary in the slice; in paetidhe
sub-threads responsible for monitoring the CO geasd airflow sensor. The reversions in these
threads are all descendents of the rtashéroller?CH4=normal?. When compared to each other, itis
found that only one of them is needed in the sticepresent the several equivalent divergentdrace

Mine Pump Case Study 119

The final result is that only two threads whichtaamentirely stuttering behaviour must remairhim t
slice. This is significantly less than if all serihg threads had remained.

The next stage is to translate the final sht@the SAL input language for model checking. The
translation process includes the option of spewifyhe type of message passing used. In this case,
non-buffered message passing was required, in trgeevent miscommunication caused by mes-
sages arriving too long after the corresponding sf@ange occurred. Additionally, prioritisationsva
applied to the SAL model, in order to ensure thigrhal messages will be immediately received if
the receiver is ready. To achieve this, internasages are given the highest priority, followedlby
other nodes except external inputs and finallyreienputs are given the lowest priority. Thisetf
tively prevents spurious counterexamples in whiehdystem responds to external input messages
faster than its internal state realisations octe.same approach was used in (Grunske, et al.).201

Table 3 compares the final slice fidrl with the original model. The number of transitiass
equivalent to the number of nodes in the contoafyraph, counting each atomic block as a single
transition. The number of PC’s (program count@&fgcts the amount of branching in the tree, since
new program counter is created for each alternativeoncurrent branch. The number of threads
shows the number of concurrent threads. All thfékese measurements were reduced in the slice,
although not by large amounts. Despite this, te tiaken to verify the theorem was significantly
reduced. Both models were verified using the SAmlsglic model checker, running on an AMD
Opteron 6174 processor at 2.2 GHz. (The procesz®part of a 48-core cluster, but only one proces-
sor was allocated to this process). To verify fi®tem on the original model, the model checker did
not provide a result in over 24 hours, at whicmpaiwas terminated manually. For the slice, the
model checker was able to provide a responsetith jodirs. The model checker found the property to
be invalid but was unable to find the counterexamigevertheless, it is still an improvement over th
original model, for which no result was given dwéthin 24 hours.

No. of
Transitions No. of PC's No. of Threads Verification Time
Original 124 70 56 > 24 hrs
Slice 102 59 43 Approx.* 1.5 hrs

* The model checker did not provide the verificattome statistics in this case, so the time wasdhapproxi-
mately.

Table 3. Original Modédl vs. Slicefor Th1l of the Mine Pump

Theorems 1 and 2

The next two theorems are both very similae 3liting criterion folrh2 is {Environment_airflow,
Personnel} and the criterion folrh3 is {Environment_CO, Personnel}. The criterion nodes forh2
are:Environment[airflow := low], Environment[airflow := normal], Personnel[in mineshaft] andPers-
onnel[not in mineshaft]. Similarly, the criterion nodes fah3 are:Environment[CO := high], Envi-
ronment[CO := normal], Personnel[in mineshaft] andPersonnel[not in mineshaft]. Table 4 gives
some of the relevant dependenciesTf@. The environment nodes are only dependent onreatter
input nodes, as fdh1. ThePersonnel[not in mineshaft] node has a control dependency to an internal
input node, which is in turn message dependemorontroller output message nodes, both named
Controller <evacuate_mineshaft>. One of these output messages is sent in respotise airflow
being low, while the other is sent in respons&éoGO level being too high. This is the cause f th
symmetry of the slices for both2 andTh3. Since both theorems have the same personnel imodes
their criterion set, the resultant slice sets loottitain the nodes given in the table, i.e. nodes the
airflow sensor, CO sensor and the environment.tdlle does not list the dependencies relevant to
thePersonnel[in mineshaft] node, which are nodes from the controller, airff@nsor and CO sensor.
There are also further dependencies not listed;iwdrie due to termination dependencies from alter-
native branches.

120 Case Studies

All of the relevant nodes from the controllergad are in the sub-threads which monitor the sen-
sors; the main controller thread is not relevahis Tesults in significantly smaller slices thae th
original model. For both theorems, the final sieés do not contain any nodes in the pump, operator
supervisor, low water sensor and high water sghseads. Again, this is intuitively correct, as @aon
of these components influence the behaviour opénsonnel.

Node Dependent on Dependen-
cy
Environment [CO := high] Environment >> CO high << cd
Environment [CO := normal] Environment >> CO normal << cd
Personnel [not in mineshaft] Personnel > evacuate_mineshaft < cd
Personnel > evacuate_mineshaft < Controller < evacuate_mineshaft > 1 md
Controller < evacuate_mineshaft > 2 md
Controller < evacuate_mineshaft > 1 Controller > low_airflow_detected < cd
Controller > low_airflow_detected < Airflow Sensor <low_airflow_detected> md
Airflow Sensor >low_airflow_detected< | Airflow Sensor > low_airflow_level < cd
Airflow Sensor > low_airflow_level < Environment < low_airflow_level > md
Environment < low_airflow_level > Environment >> airflow low << cd
Controller < evacuate_mineshaft > 2 Controller > high_ CO_detected < cd
Controller > high CO_detected < CO Sensor < high _CO_detected > md
CO Sensor > high CO_detected < CO Sensor > high _CO_level < cd
CO Sensor > high _CO_level < Environment < high _CO_level > md
Environment < high _CO_level > Environment >> CO high << cd

Table 4. Dependencies Relevant for Th3 of the Mine Pump

In the same way as for the first theorem, thalper of reversions and reference nodes that remain
makes a significant different to the size and nurolb¢hreads in the slice. For theorems 2 and 3 in
particular, there are many divergent threads wthichot need to remain in the slice. Using the same
approach as before, most of the reversions ancerefe nodes in these threads can be removed from
the slice, since they are equivalent to othersvitsthe first theorem, only one reversion or refere
node in a divergent thread is needed aftieie pump>>Ready<<. Out of the controller sub-threads
with divergent behaviour, only one of the reversionreference nodes in these threads is needed as
well. The main controller thread can be left outhef slice completely. The following tables show
statistics about the slices fti2 andTh3, respectively.

No. of Verification
Transitions No. of PC's No. of Threads Time
Original 124 70 56 10.5 hrs
Slice 41 23 21 3.69s

Table5. Original Model vs. Slicefor Th2 of the Mine Pump

No. of Verification
Transitions No. of PC's No. of Threads Time
Original 124 70 56 > 24 hrs
Slice 41 23 21 3.42s

Table 6. Original Modédl vs. Slicefor Th3 of the Mine Pump

Hospital Information System Case Study 121

As can be seen, both slices contain exactlgdhge number of transitions, program counters and
threads. This is due to the symmetry of the treeyhich both the airflow and CO are monitored in
exactly the same manner, requiring exactly the samer of nodes. The slices were much smaller
than the original model, with less than half thenber of transitions, program counters and threads.
The verification times for both theorems on thgiodl model were very large. Theorem 2 took 10.5
hours, while the model checker did not producealtéor Theorem 3 for over 24 hours. In compari-
son, the slices for both cases were extremelylfasi, taking less than 4 seconds to be proved.

The results of this case study demonstratestitétg can improve the verification time dramat-
ically. However, it depends on several factorsluidiog the property to be verified and the model.
The first theorem involved the pump, so the fitiaesvas not as small as for the other two theorems
and the verification time was not as fast. Nevédegs even for Theorem 1, the slice enabled atresul
to be obtained for a model which previously coud e verified.

6.3 Hospital Information System Case Study

The case study presented in this section isdehof a hospital information system. It descriaes
general information system that could be used Farspital or health care facility. The requirements
for it are a simplified version of those given bgfar (2008), which were in turn based on the case
study presented by Evered and Bogeholz (2004) sysim has a typical database design, where
information about each of the users is stored andssed by others. Access control policies dictate
which users are allowed to access which typedarfritation. The use of Behavior Trees for model-
ling access control policies was proposed by Zetfat. (2007).

The system manages information about eacleottidents of the facility. Each resident may be
associated with a representative who is able todiguments on behalf of them. Doctors and manag-
ers are also users of the system. Managers mayeasiohal details and previous medical records for
a resident to the system before the resident igt&dirbut are not permitted to add or update na¢dic
records afterwards. Furthermore, managers mayedaledsident’s medical records, but only if a
certain period of time has elapsed since the nesielt the facility. Doctors may add, delete odafe
medical records at any time and assign residemt or managers to the appropriate access tontro
lists. The access control lists specify which usange access to each document in the system. The
documents include the medical records for eactigasithe private notes of each doctor and the plan
of care for each resident. Visiting doctors magameporarily assigned access to a resident’'s medical
records.

6.3.1 Behavior Tree of the Hospital Information System

The Behavior Tree used in this section is aifiwation of the one given by Zafar (2008). Another
version of this Behavior Tree was used to dematesstizing in Yatapanage et al. (2010). However,
the results obtained using that model differ fréma tesults presented here due to the differences
between the two models. This version rectifies somme@r problems and more accurately reflects the
requirements of the system.

The Behavior Tree uses the notioselfs to represent the sets of each group of usersagess,
doctors, residents and representatives and thef sketta files and log files. There are four main
threads in the Behavior Tree, each correspondiadyipe of user. An overview of the Behavior Tree
IS given in Figure 59. The full Behavior Tree is targe to be shown here. Each thread fesesll
nodes to describe the behaviour of a particular. e example, the manager thread describes the
behaviour of each manager. Each thread consiatsatifof alternative branches, each of which begin
with an external input node. The external inputasagpresent the action to be performed. For exam-
ple, the manager has a branch with the externat imeaddPersonalDetails, which describes the
behaviour of adding the personal details of a exgidEvery branch ends with a reversion tcsthe
tem [... := Ready] node of that thread.

Two of the branches of the manager threademersin Figure 60. After the system node, thege is
for-all node, stating that the thread describes the bainaiar all elementsn, from the set of manag-

122 Case Studies

System
[Ready]
System System System System
[Rep :=Ready] [Man := Ready] [Doc := Ready] [Res := Ready]
Reps Managers Doctors Residents
|| p:Reps || m: Managers | | doc : Doctors | | res : Residents
Representative Manager Doctor Resident
behaviour behaviour behaviour behaviour

Figure 59. Overview of the Hospital Information System Behavior Tree.

ers. In the sub-tree below, every time a nodeséaber, it is referring to the current element of the set
of managers. Below tter-all node, there are twior-onenodes, one which selects a particular resi-
dent from the set of residents and one which setegéarticular data file from the set of data fildse
resident and data file are needed to allow the gerteehaviour to be described in terms of a particu
lar resident and data file. For example, when theager decides to delete a data file, as showe in t
figure, it is first checked that the data file beds to the currently selected resident. The digtadn
only be deleted if itsime attribute, representing the time that has elapse the resident left, is
above the pre-defined limit. The other thread shiovthe figure describes the manager adding medi-
cal records. The medical records are only addin iflata file belongs to the current resident &ind i
the data file’sadmitted attribute is false, representing that the residasinot yet been admitted to the
facility. The other manager branches are all simila

The other three threads are all designed isdhee style, each with a set of alternative bramgchi
nodes. The doctor thread is the largest. The doaterresponsible for assigning users to the \&riou
access control lists. For example, WimvNotesACL attribute is the access control list that spexifie
which users have access to each of the private.ntte doctor may assign a resident to this fist, i
order to allow them to view the notes regardingrth&his is shown on the right of Figure 61. The
nodes shown in the figure are one of the branchibe @loctor thread, wheBc is the current doc-
tor,d is a chosen data file anek is a chosen resident. If the data file belongbéachosen resident
and the doctor assigned to the data file is theentidoctor, then the doctor is allowed to asdngn t
resident to the access control list. This is acdsimgd by updating the list to contain the resid€he
doctor thread also describes the other functiodsctiors, such as adding medical records and adding
visiting doctors to access control lists.

Hospital Information System Case Study 123

System
[Man := Ready]
\
Managers
|| m: Managers
\
Residents
[] r: Residents
\
Data
[]d:Data
. Log m
Further behaviour [l entry: Log >>addMedicalRecords<<
not shown here.
4 4
m m
>> deleteData << [state := adding med rec]
d d
?deleted = false ? ?name=r"?
m d
[state := deleting data] ?admitted = false ?
d d
?name=r? [medRecords:= added]
e ,
m
d d [state :=finishedAdding]
?time = abovelLimit? 2time = belowLimit?
4
System A
d d [Man := Ready]
[deleted = true] [deleted = false]
System A System A
[Man := Ready] [Man := Ready]

Figure 60. Part of the Manager thread.

124 Case Studies

The resident thread allows the residents o the various data files associated with thenmgit
are permitted to do so according to the accessatdiats. A branch of the resident thread is shown
the left of Figure 61, wherRes is the current resident adds a chosen data file. When the resident
requests to view a data file’s private notes,fits checked whether the data file belongs tadise
dent and whether the resident is a member of ttesacontrol list.

The thread for the representatives is the sstatiread in the Behavior Tree. The represengative
are able to sign agreements on behalf of the patrehview their care plan.

Res Doc
>> viewPrivateNotes << >> assignResToViewN <<
Res d

[state = requestingNotes]

?name=res ?

d
?name=res ?

d
?assignedDoctor = Doc ?

d
?Res : viewNotesACL ?

d
[viewNotesACL :=

viewNotesACL + {res}]

Res
[state = viewed notes]

Figure 61. Part of the Resident and Doctor threads.

Unlike the previous case study, the compordritee system do not communicate using messages.
The users each access the central data files @mgtodheir own access control privileges. Thysest
would be the typical design for any similar databsgstem.

6.3.2 Slicing and Verification of the Hospital Information System

There are a number of privacy properties wiiclst be satisfied in this system. In this section,
three such properties will be investigated:

Thl. Vm € Managers, d € Data, G (m.state = deletingData and d.deleted = true =
d.leaveDate = greaterThanLimit)

For a given manager and a given data file, if theager is deleting data and the data is
deleted, the data file’'s leave date must be gréladerthe limit.

Th2. V¥V m e Managers, d € Data, G (m.state = addingMedicalRecords and d.medicalRecords
= added = d.admitted = false)
For a given manager and a given data file, if th@ager is adding medical records and

the data file's medical records have been addediata file'sadmittedattribute must be
false.

Hospital Information System Case Study 125

Th3. V're Residents, d € Data, G (r.state = viewingPrivateNotes and d.privateNotes = viewed

= r € d.viewNotesACL)

For a given resident and a given data file, ifrdgdent is viewing private notes and the
data file’s private notes are being viewed, théderg must be a member of the data
file’s viewNotesaccess control list.

The first theorem describes the requirementtinaanager cannot delete a data file until aicerta
period of time has elapsed since the resident @ssdavith the data file has left the facility. tead
of using specific number values for this purpos®e, &bstract states have been ulsEThanLimit
andgreaterThanLimitThe property therefore holds if tleaveDateattribute of the data file is in the
stategreaterThanLimit

The second theorem ensures that a managert@atthmedical records unless the resident has not
yet been admitted to the facility, given by dmittedattribute of the data file.

The third theorem utilises an access conspliewNotesAClLwhich is an attribute of a data file
that specifies the set of users who are permittektv the private notes in the data file. The prop
states that a resident must be a member ofitheéNotesACIif they are viewing the private notes.

The slicing tool in Integrare (see Section @3 used to create the slice set and re-forrtoitain
syntactically correct Behavior Tree. However, gimoval of unnecessary reversions was completed
manually as the slicing tool did not have thisdeatavailable at the time.

Slicing of the Behavior Tree begins with thestouction of the dependency graph. Each operation
of the system is based on user requests, speaffind external input messages. Due to this, most
nodes in the tree are control dependent on extieymati messages. Additionally, some functions are
governed by further conditions. For example, marh® operations are not performed unless the
given data file belongs to the given resident, $igelusing the selectiai’fhame =res?, wherel is a
chosen data file arRks is a chosen resident. These selection nodes arerdaterference-dependent
on thed[name :=res] node in the manager thread. This node represenéssignment of a name to a
data file by the manager. Several other interferelependencies exist between selection nodes and
state realisations. This includes nodes which qubsther a given user belongs to a certain access
control list. Such nodes are interference deperatenbdes that update the access control listg usin
set addition.

There are no message or synchronisation depeiedén the Behavior Tree. Furthermore, despite
there being many reversions, there are no terromakependencies caused by reversions. This is
because the reversions are all situated at thecéanches of alternative branching groups. Each
reversion only reverts within a single thread, sahreads are terminated. The only termination
dependencies are caused by the alternative bratieaselves.

Theorem 1

The next stage of slicing is to perform backisdraversals of the dependency graph startihgat t
criterion nodes. For the first theorem, the criteris: Vm € Managers and € Data,{m.state,
d.deletedd.leaveDate},. The criterion nodes are théfideleted := true], d [deleted := false], m
[state := deletingData], m [state := addingMedRec] andm [state :=finishedAdding]. Table 7 lists the
dependencies that are reached starting at thaamiteodes. The criterion nodes are italicisedhén t
table. All of the manager state realisations omlyehcontrol dependencies to external input nodes.
Thed [deleted := true] node is control-dependent drtime = abovelLimit?. This node has two de-
pendencies: a control dependency faame =r? and a termination dependency ftime = below-
Limit?, since it is the root of an alternative brandted?name = r? node leads to a chain of control
dependencies and also to nodes in another bratich wlanager thread, suchldsew :=false]. The
d [deleted :=false] node is very similar. It is control-dependentidhime = belowLimit?. This leads
to the same chain of control dependencies. Fintilly, external input nodes are termination-
dependent on all the other external input nodélsdrmanager thread, as they are all linked by an
alternative branching point. The final slice settains very few nodes and all belong to the manager
thread.

126 Case Studies
Node Dependent on Dependency
m [state := addingMedRec] m >>addMedicalRecords<< cd
d [deleted := true] d ?time = abovelimit ? cd
d ?time = abovelimit ? d?name=r? cd

d ?time = belowLimit ? td
d?name=r? d ?deleted = false ? cd
d[name:=r] dd
d ?deleted = false ? m >> deleteData << cd
d[name:=r] d ?new = true ? cd
d ?new =true ? d [new :=false] dd
d [new :=false] m >> addPersonalDetails << cd
d [deleted := false] d ?time = belowLimit ? cd
d ?time = belowLimit ? d?name=r? cd
d ?time = abovelimit ? td
m [state := deletingData] m >> deleteData << cd
m [state := finishedAdding] m >> addMedicalRecords << cd
m >> addMedicalRecords << m >> updateCarePlan << td
m >> viewCarePlan << td
m >> viewPersonalDetails << td
m >> addPersonalDetails << td
m >> assignDoctor << td
m >> deleteData << td

Table 7. Dependencies Relevant for Thl of theHIS

Due to this, the entire doctor, resident apdagentative threads are divergent. As with theipre
ous case study, when the reversions are addedddtinekslice, it is necessary to include some®f th
ones in these threads in order to preserve divetigares. In this Behavior Tree, there are no fefer
ence nodes. Using the approach in Section 3.4 3tmber of reversions can be reduced as follows.
In the doctor thread, there is a reversion atideog each alternative branch, each of which rewvert
the root node of the doctor thread. Each revelisitnansitively control-dependent on a number of
selections, mostly involving queries on the accessrol lists. According to the technique given in
Section 3.4.3, the only controlling nodes to coeisate those which have dependencies to nodes in
the slice set. Fortunately, none of the selecti@v& dependencies to nodes in the slice set, except
the selectiord?name = res?, which occurs in every branch. For the reverstorise considered
equivalent, they must all have a control dependamaymatching?name =res? node. In this case,
every reversion does have such a dependency. drsiens are also transitively control-dependent
on external input nodes. To be considered equitialeey must all have a dependency to an external
input node. Again, this is satisfied. Therefordyame of the reversions is necessary in the slice.

Using a similar line of reasoning, there isneed to include any reversions from the resident
thread, as they are all equivalent to the revessiothe doctor thread. The reversions in the essid
thread all revert to the root of the resident tir@erefore, they have a different target node tihe
reversions in the doctor thread. However, both@etsversions produce divergent traces. That is,
neither target is an ancestor of a node in the skt. For that reason, the targets can be coedidsr
equivalent to each other, so the reversions intho#fads are equivalent. This demonstrates that the
approach for reducing reversions is well-suitedsfatems containing several similar branches of
behaviour.

The reversions in the representative threadeapgred to be included in the slice, because they
have control dependencies to nodes which are depead nodes in the slice set. As a result, these
two reversions are included into the slice.

Hospital Information System Case Study 127

The final slice contains only nodes from thenager and representative threads and one branch
from the doctor thread. The number of transitioxsraumber of program counters (which indicates
the number of branches) are significantly less tharoriginal model, as shown in the table below.
Each set in the Behavior Tree can be initialisaahtpvalue. The table lists the number of transitio
and program counters for the model and slice whesé¢ts only contain one user each.

No. of
Transitions No. of PC's
Original 122 37
Slice 42 14

Table 8. Original Model vs. Slicefor Thl of theHIS

Various combinations of sets were investigdtedetermine the impact slicing had on each type o
user. Initially, all sets contained only one usate In the subsequent experiments, one set cedtain
two users, while the others still contained onlg.dn the & to 8" experiments, two of the sets con-
tained two users each, while the other sets cadaine each. Finally, in the last experimenteddl s
contained two users each. The verification timegtese experiments are given in Table 9. The
original model was not verifiable. Even using omhe user per set, the model checker was not able to
provide a result for Theorem 1 in 24 hours, at Wigicint it was terminated manually. In comparison,
model checking Theorem 1 on the slice was accohgaiextremely fast, taking less than two se-
conds. Increasing the size of the sets did noifigntly increase the verification time. The séiiei
had the greatest influence on verification time th@smanager set. When the manager set was lim-
ited to one user, the verification time remainedari0 seconds. This was regardless of the sizes of
the other sets, as demonstrated by Exp. 7, in vihetoctor and resident sets were increased to two
users each while the manager set contained onlysare\With two managers, the time increased to
one minute. Using two doctors with two managersdidhave any impact. This is consistent with
the structure of the slice, since the doctor thiaatie slice contains only one branch and would
therefore not significantly impact on the verificattime. Most of the nodes in the slice are in the
manager thread, so increasing the number of mamhgdrthe greatest impact. Two managers and
two residents took nearly 8 minutes and two useesach set took approximately one hour. This
demonstrates that the verification time still irases as the number of users in the sets are iadyeas
but slicing gives a significant improvement oveg tiiginal model which could not be verified at all

Exp. 1 2 3 4 5
1in each 2 Managers, 2 Doctors, 2 Residents 2 Represen.
set. 1 all others. 1 all others. 1 all others. 1 all others.
Original > 24 hrs - - - -
Slice 1.68s 64.05s 3.94s 6.09s 7.85s
Exp. 6 7 8 9
2 Doctors, 2 Doctors, 2 Managers, 2 in each
2 Managers, 2 Residents, 2 Residents, set.
1 all others. 1 all others. 1 all others.
Original - - - -
Slice 56.62s 9.11s 7.95 mins 64.75 mins

Table9. Verification Timesfor Thl.

Theorem 2

The criterion for Theorem 2 i$‘'m € Managers and € Data, {m.stated.admittedd.medicalRec-
ords}. Unlike the previous theorem, there are iatenodes from each of the threads. In the manager
thread, there are nodes that modify the stateeafidmager and timeedicalRecordattribute of data:
m[state := deletingData], m[state := addingMedRec], m[state := finishedAdding] andd[medical-
Records := added]. In the doctor thread, there are nodes modifffiegnedicalRecordsittribute:

128 Case Studies

d[medicalRecords := added] andd[medicalRecords := viewed]. Finally, there are the nodégned-
icalRecords :=viewed] in the resident thread abdta [admitted :=true] in the representative thread.
Note that a corresponding initialisation text fés, mentioned in Section 2.3.3, setsathmittedat-
tribute tofalseand themedicalRecordattribute tcnotAddednitially, for eachd € Data. These initial
values are therefore used in the slice as weth@scorrespond to the initialisation section & th
underlying transition system.

The backwards traversals of the dependenchgtaging at each of the manager states colleets t
same nodes as for the previous theorem, i.e. sgt@mal input nodes and selections. Some of the
relevant dependencies are given in Table 10.

Node Dependent on Dependen-
cy
m [state := deletingData] m >> deleteData << cd
m [state := addingMedRec] m >>addMedicalRecords<< cd
d [medicalRecords := added] (Manager thread) | d ?name=r"? cd
d?name=r"? d ?deleted = false ? cd
d[name:=r] dd
d ?deleted = false ? m >> deleteData << cd
d[name:=r] d ?new = true ? cd
d ?new = true ? d [new :=false] dd
d [new :=false] m >> addPersonalDetails << cd
d [admitted := true] d ? admitted = false ? cd
d ?admitted = false ? d ?representative = person ? cd
d ?representative = person ? d [representative := person] id
d [medicalRecords := viewed] (Doctor thread) d ?res : viewMedicalACL ? cd
d ?res : viewMedicalACL ? d ?doc : viewMedicalACL ? cd
d ?doc : viewMedicalACL ? d ?name =res ? cd
d ?name =res ? d[name:=r] id

Table 10. Dependencies Relevant for Th2 of the HIS

Thed[medicalRecords :=added] node in the manager thread is control-dependedframe =r?,
which results in the same nodes from the manageadibeing included into the slice as for the first
theorem. Thel[admitted := true] node in the representative thread is transitigehtrol-dependent
ond [representative := person], which is in turn interference dependent on theesponding state
realisation in the manager thread. The nodes iddbtor and resident threads have dependencies to
the access control listiewMedicalAClandaddMedicalACl.which are both updated by nodes in the
doctor thread. For this reason, a large portioefdoctor thread must be included into the slice.
Only a few reversions could be eliminated, asim¢hse most of the reversions do not produce di-
vergent behaviour. The final slice is thereforeadtas large as the original model, as shown by
Table 11.

No. of
Transitions No. of PC's
Original 122 37
Slice 116 27

Table 11. Original Model vs. Slicefor Th2 of theHIS

As was done for the first theorem, various cimiaions of the sets were used, starting with one
user in each set. The verification times for eagiegment are given in Table 12. Using the original
model with one user per set, the model checkeruwable to provide a result in 24 hours. The slice

Hospital Information System Case Study 129

was extremely fast in comparison. It was able tedsdied in 68 seconds using one user per set. The
largest part of the slice is the doctor threadnseasing the number of doctors had the greatest i
pact on verification time. When the doctor set Viaged to one user, using two representatives
increased the verification time to five minutesgEX), while using either two managers or two resi-
dents increased the time to seventeen minutes 2expd 4). Increasing the doctor set to two users
caused a larger increase in verification time, 5dburs (Exp. 3). The final experiment combineal tw
doctors with two managers. This increased the tinaémost 8 hours. The largest parts of the stiee a
the doctor and manager threads, so this is thedaopmbination of two sets with two users each.
Other combinations were not attempted as they waetigrovide any further insights. Since all other
combinations of two sets with two users resultices that are smaller than the slice in Exp. éyth
would be verified in faster time.

Exp. 1 2 3 4 5
1in each 2 Managers, 2 Doctors, 2 Residents 2 Represen.
set. 1 all others. 1 all others. 1 all others. 1 all others.
Original > 24 hrs - - - -
Slice 68.53s 17.22 mins 1hr 29.9mins 17.41 mins 5.21 mins
Exp. 6
2 Doctors,
2 Managers,
1 all others.
Original -
Slice 7hrs 52mins

Table 12. Verification Timesfor Th2.

For Theorem 3, the criterion ¥r € Residents and € Data, {.state d.privateNotesd.view-
NotesACL}. There are criterion nodes in the resider doctor threads. In the resident thread, the
nodesr[state := viewingPrivateNotes] andd[privateNotes := viewed] both modify variables in the
criterion. In the doctor thread, the criterion ne@deed[privateNotes := viewed], d[privateNotes :=
added], d[viewNotesACL := viewNotesACL + {res}] andd[viewNotesACL := viewNotesACL + {doc}].

The latter two are nodes which updatevieevNotesAClist. As was done for the previous theorem,
the initial values of the Residenstateattribute and DatagrivateNotesandviewNotesAClattrib-
utes, given by the initialisation text file, willka remain in the slice. Some of the relevant dépen
cies are given in Table 13.

The node|[state := viewingPrivateNotes] only has a control dependency to an external inpdi.

All the nodes involving therivateNotesattribute of Data have control dependencies tectiehs
querying theviewNotesAClandaddNotesAClaccess control lists. These lead to interfereege d
endencies to state realisations involving theseszsocontrol lists. These are all control-depenadent
external input nodes and selections of the fdPasignedDoctor = doc?, which are in turn interfer-
ence-dependent on thssignedDoctor := doc] node in the manager thread. Every criterion nede i
also transitively control-dependent on selectidrtiseformd?ame =r?, which are also interference-
dependent on a node in the manager thread. Thslitecontains nodes from all four threads. How-
ever, the doctor thread is not as large as for féme@. By using the approach in Section 3.4.3 rseve
al reversions can be removed, resulting in fewandines in the doctor thread. The size of the slice
compared to the original model is given in Table 14

The verification times for Theorem 3 are giwefable 15. Four combinations were attempted. The
original model could not be verified in 24 hourger with only one user per set. The slice took only
48 seconds for this case. When the number of mesages increased to two, the verification time
increased to 2 hours. Increasing the number obdetd two each resulted in a verification times of
50 mins. With two representatives but one of dlkottypes of users, the verification time was 16
minutes. This is consistent with the layout of shee, since the representative thread contains the
fewest number of nodes and branches.

130 Case Studies
Node Dependent on Depend-
ency
r [state := viewingPrivateNotes] m >> viewPrivateNotes << cd
d [privateNotes := viewed] (Resident thread) | d ?r : viewNotesACL ? cd
d ?r: viewNotesACL ? d?name=r? cd
d [viewNotesACL := viewNotesACL id
+{r}]
d [viewNotesACL := viewNotesACL id
+ {doc}]
d?name=r? m >> viewPrivateNotes << cd
d [privateNotes := viewed] (Doctor thread) | d ?r:viewNotesACL ?(Doc thread) cd
d ?r: viewNotesACL ? (Doctor thread) d ?doc : viewNotesACL ? cd
d ?doc : viewNotesACL ? d?name=r? Q) cd
d [viewNotesACL := viewNotesACL dd
+{r}]
d [viewNotesACL := viewNotesACL dd
+ {doc}]
d?name=r? Q) d >> viewPrivateNotes << cd
d [viewNotesACL := viewNotesACL + {r}] d?assignedDoctor = doc? cd
d?assignedDoctor = doc? d?name=r? (@) cd
d?name=r? @) d >> assignResToViewNotesACL << cd
d [viewNotesACL := viewNotesACL + {doc}] | d?assignedDoctor = doc? (2) cd
d?assignedDoctor = doc? (2) d?name=r? (@) cd
d?name=r? (@) d >>assignDocToViewNotesACL << cd

Table 13. Some of the Dependencies Relevant for Th3 of theHIS

No. of
Transitions No. of PC's
Original 122 37
Slice 114 26

For all three theorems, the original model dowt be verified even using only one user per set.

Table 14. Original Model vs. Slicefor Th3 of the HIS

EXp. 1 2 3 4
1in each 2 Managers, 2 Doctors, 2 Represen.
set. 1 all others. 1 all others. 1 all others.
Original > 24 hrs - - -
Slice 47.74s 2hrs 16.4mins 50.37 mins 15.8 mins

Table 15. Verification Timesfor Th3.

The slices with one user per set produced reseysquickly. As the sets were increased, the eerifi

tion times increased, which demonstrates thanglidoes not prevent the state explosion problem.
However, it increases the range of cases whiclbeanodel checked. Slicing allowed results to be
obtained for sets containing one or two usersnfast systems, this would be sufficient to identify

any problems with the design.

Hospital Information System Case Study 131

The two case studies presented in this chdptapnstrate the benefits of slicing Behavior Trees
prior to model checking. As was seen by the twe saigdies, the reductions obtained are dependent
on the model and the property. In some cases gredigctions in verification time are produced than
for others. Despite this, significant reductionsenebtained for all cases and slicing enabled nsodel
which were not previously verifiable to be modetécked. The next chapter concludes the thesis.

132 Case Studies

CONCLUSION

7.1 Contributions

The primary contribution of this thesis is ahsique for reducing Behavior Tree specifications
using slicing) in order to alleviate the state esfn problem when model checking large systems.
This slicing technique has been shown to preserveufias expressed in the logic CEl by relating
the slice, given by a functiaticey, to the original model using branching bisimulataith explicit
divergence. By evaluation on case studies, thmgltechnique has been demonstrated to have the
potential to reduce the verification time of largedels dramatically, although the extent of reduncti
is dependent on several factors, such as the fartoulde verified and the level of dependencies be-
tween the nodes of the Behavior Tree.

In addition, an optimisation technique has hgesented for reducing slices further by removing
infeasible paths. The approach has been demonkstoatemove more nodes than other previous
related approaches. This technique, given by thetienslice_infy, has also been shown to preserve
CTL formulas.

The final contribution is a novel method foogucing slices that can preserve full CTarmulas,
including formulas containing theoperator. No other slicing technique in the litera is able to
handle such formulas. This technique, given byuhetionslice_next,, has been shown to be correct
by the use of a new type of branching bisimulatiermednext-preserving branching bisimulation
which has been shown to preserve full CTL

For a transition systeBicorresponding to a BT control flow graph and arfiala ¢, the slicing
functions can be composed in the following waysgmle denotes the composition operator:

slice inf, o slicey(B),
slice_next, o slicey(B) or
slice_next, o slice_inf, o slicey(B).

This allows the user to select the most swetsdathniques for their purpose. For example, a user
may not require the use of tkeperator and therefore does not need to ussitieenext, function,
or a user may feel that the slice is small enouigihoart the need for removing infeasible paths.

The slicing techniques presented in this tresisn essential addition to the Behavior Enginger
methodology, as they allow the verification of Behavior Trees to be possible. As well as tes, t
results of this thesis are of benefit to the formathods community in general. Concepts such as the
infeasible path reduction and next-preservingregican be applied when slicing any programming
or specification language. Additionally, some @& thethods for producing Behavior Tree slices can
be utilised for other similar languages. Furtheemtire concept of next-preserving branching bisimu-
lation and the results about property preservaifdoll CTL" that are presented in this thesis are a
valuable theoretical contribution in general.

7.2 Future Work

The directions for future work include furtlealuation of the slicing technigues on case s#.idie
extending the tool support and exploration of ferttineoretical aspects of the approaches.

134 Conclusion

Case studies are necessary to evaluate tlasiilie path approach presented in Chapter 4, @n ord
to investigate how useful the reductions are ictma. Similarly, the technique given in Chapter 5
for preserving properties containing theperator needs to be evaluated on case studiess €spe-
cially important in order to determine whether ghiees remain small enough to be beneficial even
when the extra stuttering nodes are added batietslice.

Evaluation of these techniques on case stigl@gy possible if the slicing tool can perforrhal
the necessary features. Therefore, another arkdupé work is to implement the algorithms of
Chapters 4 and 5. Furthermore, it is planned ligeslicing tool will be linked with the other Beliawv
Tree editor, TextBE (Myers, 2011), which is a fyelailable tool and is therefore more accessible t
users than Integrare. Ideally, the slicing tool laalisplay the resulting slice visually to the uaed
provide statistics about its size and structuraitahally, users may find it useful to view thean
mediate control flow graphs and program dependgrajghs.

Another related avenue for future work is taisie a polynomial time algorithm for the infeasible
path technique. Preliminary investigations ints thiggest that a polynomial algorithm is possiiyle,
storing the necessary information in such a walrtbanode needs to be explored more than once.

The technique for adding extra stuttering nddg@seserve properties with tk®perator could be
further optimised by considering the structuréhefformula in more detail. There are cases where th
proposed approach adds more stuttering nodesthacessary. For example, if the formula does not
contain theE operator after ax operator, it is not necessary to add stutterirpadefore branching
locations. Furthermore, an approach could be dpedlto add certain numbers of stuttering nodes
before some observable nodes, while adding diffeneambers before other observable nodes, based
on the specific atomic propositions mentioned enftrmula.

Finally, another direction for future reseaisto investigate other applications where nexspre
erving branching bisimulation could be useful,agplications which cannot maintain a strong bisim-
ulation but could benefit from the use of the retgp operator.

REFERENCES

Amtoft, T. (2008). Slicing for modern program stiwes: a theory for eliminating irrelevant loops.
Information Processing Letters, 1(@§, 45-51.

Baier, C., & Katoen, J. P. (2008&rinciples of Model Checkindg/IT Press.
Behavior Engineering. Viewed 25/10/2011, www.bébigangineering.org

Behavior Tree Group. (2007). Behavior Tree Notatibi®. Retrieved from
www.behaviorengineering.org on 25/10/2011

Binkley, D., Danicic, S., Gyiméthy, T., Harman, Miss, A., & Korel, B. (2006). A Formalisation of
the Relationship Between Forms of Program Slicgugence of Computer Programming($2228-
252.

Bloom, B. (1995). Structural Operational SemarfocsVeak BisimulationsTheoretical Computer
Science, 14@-2), 25-68.

Bordini, R. H., Fisher, M., Wooldridge, M., & Viss&V. (2009). Property-based Slicing for Agent
Verification. Journal of Logic and Computation, (B9, 1385-1425.

Brickner, I. (2007). Slicing Concurrent Real-Tinpe&ifications for Verifications. IrProceedings of
the 6" International Conference on Integrated Formal Meth (IFM 2007)(pp. 54-74): Vol. 4591 of
Lecture Notes in Computer Science, Springer.

Brickner, I., & Wehrheim, H. (2005a). Slicing arnelgrated Formal Method for Verification. In:
Proceedings of théd"nternational Conference on Formal Engineering Mets (ICFEM 2005)pp.
360-374): Vol. 3785 of Lecture Notes in ComputeieSce, Springer.

Bruckner, I., & Wehrheim, H. (2005b). Slicing OhjecSpecifications for Verification. Iieroceed-
ings of the & International Conference of Z and B Users (ZB 30(&p. 149-157): Vol. 3455 of
Lecture Notes in Computer Science, Springer.

Canfora, G., Cimitile, A., & De Lucia, A. (1998).06ditioned Program Slicingnformation and
Software Technology, 401-12), 595-607.

Chen, F., & Reu, G. (2006). Parametric and Termination-Sens(igatrol Dependence. In: K. Yi
(Ed.),Proceedings of the 13th International Symposiui@tatic Analysis (SAS 200@)p. 387-404):
Vol. 4134 of Lecture Notes in Computer Sciencejrigjer.

Cheng, J. (1993). Slicing Concurrent Programs +ApB Theoretical Approach. In: P. A. Fritzson
(Ed.), Proceedings of the 1st International Workshop ortofated Algorithmic Debugging
(AADEBUG '93)pp. 223-240): Vol. 749 of Lecture Notes in Conguiicience, Springer.

Clarke, E.M., & Emerson, E.A. (1982). Design anat8gsis of Synchronisation Skeletons Using
Branching Time Temporal Logic. IRroceedings of Logics of Programs: Workshigp. 52-71):
Vol. 131 of Lecture Notes in Computer Science, rgyef.

Clarke, E. M., Emerson, E. A,, & Sistla, A. P.869. Automatic Verification of Finite State Concur-
rent Systems using Temporal Logic Specificati&@M Transactions on Programming Languages
and System$§(2), 244-263.

136 References

Clarke, E., Grumberg, O., Jha, S., Lu, Y., & Veith(2001). Progress on the State Explosion Prob-
lem. In:Informatics. 10 Years Back. 10 Years Ahdpf. 176-194): Vol. 2000 of Lecture Notes in
Computer Science, Springer.

Colvin, R. J., & Hayes, I. J. (2011). A SemantmsBehavior Trees Using CSP with Specification
CommandsScience of Computer Programming(17®), 891-914.

Dams, D. (1996 bstract Interpretation and Partition Refinement¥odel CheckingPhD Thesis,
Institute for Programming Research and Algorithmi&isdhoven University of Technology.

Dams, D., Gerth, R., & Grumberg, O. (1997). Abdttaterpretation of Reactive SysterdsCM
Transactions on Programming Languages and SysteX®), 253-291.

Danicic, S., Harman, M., & Sivagurunathan, Y. (1995 Parallel Algorithm for Static Program
Slicing. Information Processing Letters, 5807-313.

de Moura, L., Owre, S., Ruel3, H., Rushby, J., Slyaihk, Sorea, M., & Tiwari, A. (2004). SAL 2. In:
R. Alur & D. Peled (Eds.)Proceedings of the 16th International Conference&Computer-Aided
Verification (CAV2004)(pp. 251-254): Vol. 3114 of Lecture Notes in Cartgp Science, Springer.

de Nicola, R., & Vaandrager, F. (1995). Three Ledir Branching Bisimulationlournal of the
Association for Computing Machinery, (22, 458-487.

Dromey, R. G. (2003). From requirements to dedigmalizing the key steps. lProceedings of
International Conference on Software Engineerind Bormal Methods (SEFM 20Q3pp. 2-11),
IEEE.

Dromey, R. G. (2005). Genetic design: Amplifying ability to deal with requirements complexity.
In: Proceedings of Models, Transformations and T.dpls. 95-108): Vol. 3466 of Lecture Notes in
Computer Science, Springer.

Dwyer, M. B., Hatcliff, J., Hoosier, M., Ranganath, Robby, & Wallentine, T. (2006). Evaluating
the Effectiveness of Slicing for Model ReductiorGafncurrent Object-Oriented Programs Rro-
ceedings of the fanternational Conference on Tools and Algorithordtie Analysis and Construc-
tion of Systems (TACAS 200@)p. 73-89): Vol. 3920 of Lecture Notes in CongpiBcience, Spring-
er.

Evered, M., & Bogeholz, S. (2004). A Case Studgdcess Control Requirements for a Health In-
formation System. IrProceedings of the"®Workshop on Australasian Information Security,&at
Mining and Web Intelligence, and Software Interoiadilisation (pp. 53-61), Vol. 32, Australian
Computer Society.

Ganesh, V., Saidi, H., & Shankar, N. (19%l)cing SALCSL Technical Report, Computer Science
Laboratory, SRI International.

Grunske, L., Winter, K., & Yatapanage, N. (2008fiDing the Syntax of Visual Languages with
Advanced Graph Grammars - A Case Study Using Beh@weesJournal of Visual Languages and
Computing, 1€8), 343-379.

Grunske, L., Winter, K., Yatapanage, N., Zafarg3_jndsay, P. A. (2011). Experience with Fault
Injection Experiments for FMEAlournal of Software Practice and Experience14}, 1233-1258.

Hassine, J., Dssouli, R., & Rilling, J. (2005). Appg Reduction Techniques to Software Functional
Requirement Specifications. IRroceedings of the™international SDL and MSC Workshop on

References 137

System Analysis and Modelling (SAM 200dp. 138-153): VVol. 3319 of Lecture Notes in Carep
Science, Springer.

Hatcliff, J., Corbett, J., Dwyer, M., Sokolowski, & Zheng, H. (1999). A Formal Study of Slicing
for Multi-threaded Programs Using JVM Concurrenciyritives. In: A. Cortesi & G. File (Eds.),
Proceedings of thé"@nternational Symposium on Static Analysis (SA5(p. 1-18) Vol. 1694 of
Lecture Notes in Computer Science, Springer.

Hatcliff, J., Dwyer, M., & Zheng, H. (2000). Sliajrsoftware for model constructiddigher Order
and Symbolic Computation, (83, 315-353.

Heimdahl, M. P. E., & Whalen, M. W. (1997). Redaatand Slicing of Heirarchical State Machines.
In: M. Jazayeri & H. Schauer (Edyoceedings of the 6th European Software Enging&onfer-
ence Held Jointly with the 5th ACM SIGSOFT Symposiathe Foundations of Software Engineer-
ing (ESEC/FSE’'97)pp. 450-467) Vol. 1301 of Lecture Notes in Comepiscience, Springer.

Korel,B., & Laski, J. (1988).Dynamic program slicingformation Processing Letters, (3, 155-
163.

Korel, B., Singh, I., Tahat, L., & Vaysburg, B. (). Slicing of state-based models.Pnoceedings
of the International Conference on Software Maiatere (ICSM 2003)pp. 34-43), IEEE.

Krinke, J. (1998). Static slicing of threaded peogs. ACM SIGPLAN Notices, 88), 35-42.

Krinke, J. (2003)Advanced Slicing of Sequential and Concurrent Pxotg.PhD Thesis, Fakultat
FUr Mathematik und Informatik, Universitat Passau.

Kucera, A., & Strejek, J. (2005). The Stuttering Principle Revisitecta Informatica, 4@7/8), 415-
434.

Kumar, S., & Horwitz, S. (2002). Better SlicingPfograms with Jumps and Switches.Handa-
mental Approaches to Software Engineer{pg. 371-388): Vol. 2306 of Lecture Notes in Corep
Science, Springer.

Labbé, S., & Gallois, J.-P. (2008). Slicing Comnuating Automata Specifications: Polynomial
Algorithms for Model Reductiorzormal Aspects of Computing, (8), 563-595.

Labbé, S., Gallois, J.-P., & Pouzet, M. (2007)ci8f communicating automata specifications for
efficient model reduction. IfProceedings of the 2007 Australian Software Enginge&Conference
(ASWEC'07)(pp. 191-200), IEEE.

Lamport, L. (1983). What Good is Temporal Logic’RnE. A. Mason (Ed.)nformation Processing
83, (pp. 657-668), Elsevier Science Publishers BNérth-Holland).

Lano, K., & Kolahdouz-Rahimi, S. (2010). SlicingWML Models Using Model Transformations.
In: D. C. Petriu, N. Rouquette & O. Haugen (Edpceedings of the ACM/IEEE "1 Brternational
Conference on Model Driven Engineering LanguagesSystems (MODELS 2010 Part (Pp. 228-
242): Vol. 6395 of Lecture Notes in Computer Scegrgpringer.

Larsen, K. G., Pettersson, P., & Yi, W. (1997). bldn a Nutshellnternational Journal on Soft-
ware Tools for Technology Transfe(112), 134-152.

Luangsodsai, A., & Fox, C. (2010). Concurrent Stadet Slicing. InProceedings of the 2nd Com-
puter Science and Electronic Engineering Conferé@teEC), Colchester, UKpp. 1-7).

138 References

McMillan, K. (1992).Symbolic Model Checking. An Approach to the Stapddsion ProblemPhD
Thesis, Carnegie Mellon University.

Millett, L. I., & Teitelbaum, T. (2000). Issues glicing PROMELA and its applications to model
checking, protocol understanding and simulatiot@rnational Journal on Software Tools for Tech-
nology Transfer, @), 343-349.

Muller-Olm, M., & Seidl, H. (2001). On Optimal Sirgy of Parallel Programs. IRroceedings of the
thirty-third annual ACM symposium on Theory of Cating, Hersonissos, Greeg@p. 647-656).

Myers, T. (2010)The Foundations for a Scaleable Methodology fote®ys DesignPhD Thesis,
School of Information and Communication Technoldggiffith University, Queensland, Australia.

Myers, T. (2011) textbe. Textual Editor for Behavimgineering. Viewed 22April, 2012,
http://code.google.com/p/textbe/

Nanda, M. G., & Ramesh, S. (2000). Slicing concurpgogramsACM SIGSOFT Software Engi-
neering Notes, 45), 180-190.

Nanda, M. G., & Ramesh, S. (2006). Interprocediligihg of multithreaded programs with applica-
tions to JavaACM Transactions on Programming Languages and Byst2$6), 1088-1144.

Oda, T., & Araki, K. (1993). Specification SlicimgFormal Methods of Software Development. In:
Proceedings of the 17th Annual International Corap@8oftware and Applications Conference
(COMSAC 93)(pp. 313-319).

Odenbrett, M., Nguyen, V. Y., & Noll, T. (2010).i8hg AADL specifications for model checking.
In: C. Muiioz (Ed.)Proceedings of the Second NASA Formal Methods Sympgpp. 217-221).

Ottenstein, K. J., & Ottenstein, L. M. (1984). Togregram dependence graph in a software develop-
ment environmenSIGSOFT Software Engineering Notg8)9177-184.

Peled, D. (1998). Ten Years of Partial Order Radncin: Proceedings of the T0nternational
Conference on Computer Aided Verificatifpp. 17-28): Vol. 1427 of Lecture Notes in Congput
Science, Springer.

Pnueli, A. (1977). The temporal logic of prograinsProceedings of the 18th IEEE Symposium on
Foundations of Computer Scien¢pp. 46-67), IEEE.

Podgurski, A., & Clarke, L. A. (1990). A Formal Melabf Program Dependences and Its Implications
for Software Testing, Debugging and MaintenahEEE Transactions on Software Engineering,
16(9), 965-979.

Quielle, J., & Sifakis, J. (1982). Specificatiordarerification of Concurrent Systems in CESAR. In:
International Symposium on Programming: 5th Coliagu (pp. 337-351): Vol. 137 of Lecture Notes
in Computer Science, Springer.

Rakow, A. (2008). Slicing Petri Nets with an Appliion to Workflow Verification. InProceedings
of the 34 Conference on Current Trends in Theorey and Praaif Computer Science (SOFSEM
2008) (pp. 436-447): Vol. 4910 of Lecture Notes in Caitgp Science, Springer.

Ranganath, V. P., Amtoft, T., Banerjee, A., Dwyér, & Hatcliff, J. (2007). A new foundation for
control-dependence and slicing for modern progtaictigresACM Transactions on Programming
Languages and Systems(29

References 139

Ranganath, V. P., & Hatcliff, J. (2004). Prunintelfierence and Ready Dependence for Slicing Con-
current Java Programs. In: E. Duesterwald (Buddgeedings of the ¥3nternational Conference on
Compiler Construction (CC 2004(pp. 39-56): Vol. 2985 of Lecture Notes in Congsuscience,
Springer.

Representing Complex Systems (2008)e Magazine of Engineers Australia(®)0 38.

Reps, T., Horwitz, S., Sagiv, M., & Rosay, G. (1p®8peeding Up SlicindhCM SIGSOFT Software
Engineering Notes, 19), 11-20.

Sabouri, H., & Sirjani, M. (2010). Slicing-baseddretions for Rebecé&lectonic Notes in Theoreti-
cal Computer Science, 26009-224.

Schaefer, I., & Poetzsch-Heffter, A. (2008). Slrior Model Reduction in Adaptive Embedded
Systems Development. IRroceedings of the Workshop on Software Engineéoingdaptive and
Self-managing Systems (SEAMS'Q&). 25-32).

Silva, J. (2011). A Vocabulary of Program Slicing€ed TechniqgueACM Computing Surveys, To
Appear.(Retrieved from www.dsic.upv.es/~jsilva/papers/Madary.pdf)

Silva, J., Leuschel, M., Tamarit, S., Oliver, JL l&rens, M. (2008). Static slicing of CSP speific
tions. In: M. Hanus (Ed.pPre-Proceedings of LOPSTR 2008, The 18th Internati®ymposium on
Logic-Based Program Synthesis and Transformatioly, 2008 (pp. 141-150).

ter Beek, M. H., Fantechi, A., Gnesi, S., & Mazidnt(2011). A State/Event Based Model Checking
Approach for the Analysis of Abstract System PropsrScience of Computer Programming, 76
119-135.

Thrane, C., & Sorensen, U. (2008). Slicing for URRAIN: Student Paper, 2008 Annual IEEE Con-
ference (pp. 1-5), IEEE.

Tip, F. (1995). A survey of program slicing techueg.Journal of Programming Language$33
121-189.

van Glabbeek, R., Luttik, B., & Tka, N. (2009a). Branching Bisimilarity with Expliéivergence.
Fundamenta Informaticae, 88, 371-392.

van Glabbeek, R., Luttik, B., & Tka, N. (2009b). Computation Tree Logic with DeallIDetection.
Logical Methods in Computer Sciencé}:5), 1-24.

van Glabbeek, R. J., & Weijland, W. P. (1996). Bfang Time and Abstraction in Bisimulation
SemanticsJournal of the Association for Computing Machin&$(3), 555-600.

van Langenhove, S., & Hoogewijs, A. (2006). VerifyiSliced Hierarchical Statecharts with SViL.
In: The 2006 Federated Logic Conference Verify '06ifiéation Workshop, Seattle, Washington,
USA (pp. 42-52).

Vasudevan, S., Emerson, E. A., & Abraham, J. AOR0Efficient Model Checking of Hardware
Using Conditioned Slicingzlectonic Notes in Theoretical Computer Scienc8, 229-294.

Wasserrab, D., Lohner, D., & Snelting, G. (2009).RDG-based Noninterference and Its Modular
Proof. In:Proceedings of the ACM SIGPLAN Fourth Workshop myfmming Languages and
Analysis for Security (PLAS'0Qpp. 31-44).

140 References

Weiser, M. (1981). Program slicing. lroceedings of the 5th International Conferenc8oftware
Engineering (ICSE'81)pp. 439-449), IEEE.

Weiser, M. (1984). Program slicin&EE Transactions on Software Engineering, SE)1.352-357.

Wen, L., Lin, K., Colvin, R., Seagrott, J., Yatapga, N., & Dromey, R. G. (2007). "Integrare" - A
Collaborative Environment for Behavior-Oriented [Bes In: Proceedings of the™dnternational
Conference on Cooperative Design, VisualisationEmgineering (CDVE 2007(pp. 122-131): Vol.
4674 of Lecture Notes in Computer Science, Springer

Wu, F., & Yi, T. (2004). Slicing Z SpecificationACM SIGPLAN, 3@).

Xu, B., Qian, J., Zhang, X., Wu, Z., & Chen, L. (&). A brief survey of program slicingCM
SIGSOFT Software Engineering Noteg2301-36.

Yatapanage, N., Winter, K., & Zafar, S. (2010)cBlj Behavior Tree models for verification. In: C.
S. Calude & V. Sassone (Ed®)pceedings of the 6th IFIP International Confereoto Theoretical
Computer Science (TCS201({Pp. 125-139): Vol. 323 of IFIP Advances in Infation and Commu-
nication Technology, Springer.

Zafar, S. (2008)ntegration of Access Control Requirements inteeBySpecification$hD Thesis,
School of Information and Communication Technoldggiffith University, Queensland, Australia.

Zafar, S., Colvin, R., Winter, K., Yatapanage, &8 Dromey, R. G. (2007). Early Validation and
Verification of a Distributed Role-Based Access toinMlodel. In: Proceedings of the T4Asia-
Pacific Software Engineering Conference (APSEC 20pp. 430-437), IEEE.

Zhao, J. (1999). Slicing concurrent Java progrém®&roceedings of the 7th International Workshop
on Program Comprehensipfpp. 126-133), IEEE.

