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AABBSSTTRRAACCTT  
 
It is essential to ensure the correctness of software systems, especially for large and safety-critical 
applications. Detecting problems earlier in the software cycle, such as in the specification and design 
phases, would significantly reduce the costs involved. Rigorous automated approaches are ideal for 
detecting such problems. Model checking is an automated verification technique which exhaustively 
searches the state space to determine whether a model of the system satisfies a given property. How-
ever, model checking suffers from state explosion, preventing large systems from being verified. 
    The Behavior Tree specification language enables engineers to handle the complexity of large 
systems, by allowing them to focus on one requirement at a time. Behavior Trees maintain strong 
links to the original requirements of the system. There has been support for automatic translation of 
Behavior Trees into model checking languages. However, due to the state explosion problem, large 
Behavior Trees still cannot be verified. 
    Program slicing is a reduction technique which automatically removes irrelevant portions of the 
program, usually applied for improving understanding and debugging. In this thesis, a technique for 
reducing Behavior Trees prior to verification is proposed, based on the concepts of program slicing. 
The technique is shown to preserve all properties specified in the language CTL*

-X, which is CTL* 
without the next operator. Thus, a property will be proved on the sliced model if and only if it is 
proved on the original model. The slicing approach is demonstrated on two case studies, producing 
significant reductions in verification time. 
    A new optimisation technique is also proposed, to allow the Behavior Tree to be reduced even 
further, by eliminating nodes which are infeasible. The technique is able to reduce slices more than 
previous approaches. The optimisation technique is also shown to preserve CTL*

-X properties. 
    No other slicing method is able to preserve properties which contain the next operator. Another 
contribution of this thesis is a novel method for producing slices that are able to preserve full CTL*, 
including properties containing the next operator.  
    This technique is shown to be correct by establishing a new form of branching bisimulation, known 
as next-preserving branching bisimulation. Weak forms of bisimulation are normally unable to pre-
serve properties containing the next operator. Next-preserving branching bisimulation is shown to 
preserve full CTL*, which includes the next operator. The new form of bisimulation allows similar 
techniques to be developed for other modelling languages as well, since all that is required is to show 
the establishment of a next-preserving branching bisimulation. 
    The final outcome of the thesis is a slicing approach which can effectively reduce Behavior Trees, 
in order to allow large systems to be verified. Furthermore, the thesis gives useful theoretical results 
about property preservation of full CTL* by next-preserving branching bisimulation.  
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    Software systems are everywhere. They range from large safety-critical applications, such as medi-
cal equipment or aircraft control, to small household items used every day. Designing these systems 
without any flaws is a challenge. The systems must provide some degree of reliability to the user, 
giving them the assurance that the functions will work as expected. For safety-critical applications, the 
guarantee of correctness is even more important. For these reasons it is important to ensure that the 
systems have been designed correctly. 
    Correcting software defects after the system has been implemented is significantly more expensive 
than if the defects are corrected in the specification and design phases. It is therefore preferable to 
locate as many defects as possible in these early stages of the software process. Informal specifica-
tions written in natural language are not ideal for locating such defects, as the text descriptions are 
often ambiguous and incomplete. The use of formal models solves these problems. Formal methods 
refers collectively to techniques which have a rigorous mathematical basis. Formal specification 
languages allow the system description to be specified in a precise unambiguous manner. By specify-
ing the informal natural language requirements as a formal model, defects are much easier to identify.  
    Techniques such as manual inspections and testing are often applied in practice for locating defects.  
Even using a formal model, manual inspection is usually a tedious and error-prone task. Although 
testing often catches many defects, it is not an exhaustive technique, so some errors can still remain 
undetected. On the other hand, verification techniques, such as model checking, can provide a guaran-
tee that a model satisfies its requirements.  
    Model checking (Clarke & Emerson, 1982; Quielle & Sifakis, 1982) is an automated technique 
which exhaustively explores all possible execution traces of the system. This provides an assurance 
that the system will behave as required under all circumstances. The overall process of model check-
ing is shown in Figure 1. The system specification or design is first translated into a formal model. 
The requirements or properties which the system is required to fulfill are also expressed mathematical-
ly, in the form of  a temporal logic formula. The formal model and the temporal logic formula are then 
given as inputs to the model checker. The model checker automatically searches the state space of the 
model, to determine whether or not the model satisfies the property in question. If the property does 
not hold, the model checker returns a counterexample, which is a trace where the violation occurs.  
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    Despite its advantages, model checking has a significant disadvantage: state explosion. State explo-
sion refers to the exponential increase in the number of states as the model increases in complexity. 
The large number of states can cause the model checker to run out of memory resources or take an 
excessive amount of time to return a result. This can prevent many real-life systems from being model 
checked.  
    A number of methods exist for reducing state explosion, such as partial-order reduction (Peled, 
1998), Binary Decision Diagrams (McMillan, 1992), abstraction (see for example Dams et al. (1997) 
and Clarke et al. (2001)) and slicing (Weiser, 1984). These can be divided into two classes: techniques 
which operate on the internal data structures of the model checker and techniques which  reduce the 
model prior to running the model checker. Internal techniques, such as Binary Decision Diagrams and 
partial-order reduction, can provide significant reductions in the size of the state space. However, for 
large systems, the reductions provided may still be inadequate to allow model checking to be per-
formed. The solution is to employ further reduction techniques in conjunction with the internal reduc-
tion methods. Techniques such as abstraction and slicing can effectively reduce the size and complexi-
ty of the model prior to sending it to the model checker.  
    Abstraction and slicing both produce smaller models; abstraction by representing several variables 
as a single abstract variable, and slicing by eliminating irrelevant portions of the model. The main 
difference is that an abstract model is always either an over-approximation or an under-approximation 
of the original model, so it is not both sound and complete, whereas the model produced by slicing, 
known as the slice, is both sound and complete. Over-approximations can produce counterexamples 
that are not valid traces of the original model, while under-approximations can fail to discover coun-
terexamples that exist in the original. In contrast, a property holds on the slice if and only if it holds on 
the original model.  
    Another advantage is that slicing algorithms are computationally inexpensive. There is therefore no 
disadvantage in using slicing. If slicing is able to reduce the model, it will reduce the burden of the 
model checker. In the worst case, the slice returned will be the same size as the original model. Due to 
its low computational complexity, slicing can be used as a complementary method to the other ap-
proaches for reducing state explosion. 
    The aim of this thesis is to use slicing techniques to reduce specifications prior to model checking in 
order to alleviate the state explosion problem, allowing large systems to be verified. The specification 
language that will be used is Behavior Trees (Dromey, 2003, 2005), a language with a formal seman-
tics and a graphical, tree-like notation that is easily understood by industry practitioners. The results 
from this thesis are applicable for slicing of models in other specification languages as well. 

        
    

Figure Figure Figure Figure 2222. . . . Model Checking Behavior Trees with SlicingModel Checking Behavior Trees with SlicingModel Checking Behavior Trees with SlicingModel Checking Behavior Trees with Slicing 

 
    Figure 2 shows the proposed approach for using slicing to aid in the model checking of Behavior 
Trees. The informal requirements must first be translated into a Behavior Tree using the normal Be-
havior Engineering methodology. The property to be verified must be expressed as a temporal logic 
formula. Then, a slice is produced using the Behavior Tree and the temporal logic formula as inputs to 
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the slicer. The slice and the temporal logic formula are then given to the model checker, which then 
either states that the property is proved or returns a counterexample.  
 
Behavior Trees 
 
    Behavior Trees is the specification language belonging to the Behavior Engineering methodology, 
proposed by Dromey (2003). Behavior Engineering is an approach for producing a formal specifica-
tion out of informal, natural language requirements ("Behavior Engineering"). Behavior Engineering 
advocates a simple approach for creating a Behavior Tree out of requirements. Each individual re-
quirement is modelled separately and the results are then merged together. This process assists users 
with managing large sets of requirements. The final result is a formal model which maintains tracea-
bility to the original requirements. Behavior Engineering has the following benefits (Dromey, 2003, 
2005): 

� The incremental approach for requirements translation enables users to handle the complexity 
of large systems by reducing the burden on their short-term memory. 

� The approach effectively “bridges the gap between requirements and design” (Dromey, 2003, 
2005), by providing a rigorous translation method. 

� Behavior Trees maintain traceability to the original requirements by annotating the model 
with the identifiers of the requirements. This is useful to ensure that later stages of the design 
continue to preserve the original intentions of the requirements. 

� The graphical notation enables users with no mathematical or formal methods background to 
create Behavior Trees with little difficulty. This is evident by the recent interest in Behavior 
Engineering by industry practitioners ("Representing Complex Systems," 2008). 

� The output is a formal model, because Behavior Trees have a formal semantics (Colvin & 
Hayes, 2011). 

  
    Behavior Trees can be automatically translated into model checking languages for verification 
(Grunske, et al., 2008). This process has been used successfully for verifying several case studies 
(Grunske, et al., 2011). However, it inevitably cannot escape the state explosion problem. For large 
Behavior Tree specifications, the model checker often takes too long or runs out of memory and is 
unable to return a result. Zafar (2008) attempted to model check a case study of a hospital information 
system. He reported that after running for more than 270 hours, the model checker ran out of memory 
without providing a result. He finally resorted to reducing the model using his own knowledge of the 
system and was able to obtain a result. However, since the reduction was performed manually and not 
according to a defined approach, he had no guarantee that the results obtained using the reduced mod-
el applied to the original model. Examples such as this demonstrate the importance of a correct, auto-
mated approach for reducing Behavior Tree models. 
 

1.1     Thesis Thesis Thesis Thesis ObjectivesObjectivesObjectivesObjectives    
 
    Since the Behavior Trees of most realistic systems are too large for the model checker to handle, 
users will be unable to use the benefits of Behavior Engineering for large systems. The primary goal 
of this thesis is to fill this gap in the Behavior Engineering methodology, by proposing the use of 
program slicing techniques to automatically reduce Behavior Tree specifications, for reducing the 
time and memory resources required by the model checker. 
    In addition to this, another objective of this thesis is to provide new slicing methods that are appli-
cable for slicing of any programming or specification language. This includes an optimisation tech-
nique for obtaining further reductions to the slice. As well as this, the thesis describes a method for 
creating slices that are capable of preserving the next operator. Additionally, the thesis proposes a 
novel form of branching bisimulation under which the temporal logic CTL* is preserved, which in-
cludes the next operator. This is a useful theoretical result. 
    The thesis begins, in Chapter 2, with an introduction to the concepts required to understand the 
thesis topic: temporal logic, existing slicing methods, bisimulation and the syntax and semantics of 
Behavior Trees. 
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    Program slicing techniques cannot be directly applied to Behavior Trees, due to the differences in 
semantics and structure between programs and Behavior Trees. For this reason, a new approach for 
slicing Behavior Trees has been developed and is presented in this thesis, in Chapter 3. The slicing 
approach utilises both adaptations of existing slicing techniques used in programs, as well as new 
methods for handling constructs that are specific to Behavior Trees. For this purpose, concepts used in 
program slicing, such as the control flow graph, the graph that represents the control flow in a pro-
gram, must be adapted for Behavior Trees. A new form of control flow graph has been proposed, 
which incorporates concepts such as alternative branching, a branching construct unique to Behavior 
Trees. Slicing operates by identifying dependencies between the nodes of the model. The proposed 
slicing approach utilises adaptations of dependency types normally used in program slicing, such as 
control and data dependence, as well as new dependence types for synchronisation, communication 
using message passing and termination of threads. 
    Behavior Trees contain nodes which divert the control flow to other locations, known as reversions 
and references. A technique for removing unnecessary nodes of these types is presented. The tech-
nique ensures that the resulting slice will still preserve all necessary loops but will not contain unnec-
essary ones. Furthermore, this thesis presents a technique for merging the nodes of the slice into a 
syntactically correct Behavior Tree. 
    Polynomial-time algorithms for producing the slice have been developed, to ensure that the time for 
producing slices is kept to a minimum. 
    The slicing approach is only of use if the slices produce identical verification results to the original 
models. To confirm that this is the case, a proof of correctness is presented, which relates the slice to 
the original model using branching bisimulation with explicit divergence, a form of weak bisimulation 
that is known to preserve properties specified in the logic CTL*-X. 
    Chapter 4 presents an optimisation technique for reducing the model further, by removing infeasi-
ble paths. This technique is an improvement of an existing approach used for slicing programs. The 
approach given in this thesis can effectively produce smaller slices than the previous approach. As 
well as being useful for Behavior Trees, this optimisation technique is applicable to all forms of slic-
ing, including slicing of programs. A proof of correctness using bisimulation is provided, to ensure 
that the reductions do not change the verification outcome.  
    All previous slicing approaches designed for verification are unable to preserve properties contain-
ing the temporal logic operator X. In Chapter 5, a novel technique is proposed, which produces slices 
that preserve full CTL*, including formulas containing the operator X. This result is shown by the 
proposal of a new form of branching bisimulation, known as next-preserving branching bisimulation. 
A proof has been provided to show that next-preserving branching bisimulation preserves full CTL*. 
This result is an essential contribution, as the weak forms of bisimulation are normally unable to 
preserve properties containing the X operator. Thus, these results are useful for many applications. 
    To confirm that the theoretical results of the previous chapters are applicable in practice, the results 
must be demonstrated on case studies. In Chapter 6, the Behavior Tree slicing approach is demon-
strated on two case studies: a mine pump and a hospital information system. Both are case studies 
which originally could not be model checked in a reasonable amount of time. As will be seen, slicing 
was able to significantly reduce the model checking time, thus allowing verification results to be 
obtained for both case studies. 
    Finally, Chapter 7 concludes the thesis and provides directions for future research. 
    The techniques given in each of the chapters can be composed together in various ways, according 
to the user’s preference. After obtaining a slice using the general Behavior Tree slicing approach, this 
can be used directly for model checking. Alternatively, an optimised slice can be developed from it, 
using the approach given for removing infeasible paths, or the slice can be transformed into one that 
preserves the next operator. Another option is to compose all three techniques to create an optimised 
slice that preserves all formulas. 
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1.2     Related WorkRelated WorkRelated WorkRelated Work    
 
    Program slicing was originally developed by Weiser (1984) for aiding programmers in the debug-
ging and understanding of large systems. There has been recent interest in applying slicing techniques 
for model reduction prior to verification.  
    This thesis presents the first approach for slicing Behavior Tree models. Previous attempts at reduc-
ing Behavior Tree models have involved manual changes made according to the user’s knowledge of 
the system (Zafar, 2008). In contrast, the approach given in this thesis is fully automatic and the slice 
is guaranteed to preserve the same set of properties as the original. 
    The closest related work are approaches which slice specifications written in other languages for 
verification. Compared to slicing programs for debugging and understanding, slicing models for 
verification is a relatively new topic. Nevertheless, there have been approaches proposed by several 
groups for different specification languages. Millet and Teitelbaum (2000) sliced Promela models, 
which is the input language of the SPIN model checker. However, their approach was not guaranteed 
to preserve global properties, as they felt that property preservation was not essential for obtaining 
useful results. In a similar manner, Ganesh (1999) proposed a technique for slicing SAL models, the 
input language of the SAL model checking framework and Thrane and Sorensen (2008) gave a tech-
nique for slicing models for the UPPAAL model checker. Of these, Ganesh did not use temporal logic 
theorems for the slicing criterion, instead using the input and output variables in the model. Neither 
proved the correctness of their approach. Sabouri and Sirjani (2010) sliced Rebeca models, which is 
an actor-based specification language, although they did not prove the correctness of the approach 
either. 
    Brückner and Wehrheim (2005b) sliced Object-Z for verification and later extended the approach to 
CSP-OZ (Brückner & Wehrheim, 2005a), a language that combines Communicating Sequential Pro-
cesses (CSP) and Object-Z. The approach was then extended to CSP-OZ-DC, a combination of CSP, 
Object-Z and Duration Calculus (Brückner, 2007). In their approach, the criterion contains the nodes 
that influence the events and states found in the theorem, expressed in Duration Calculus. This was 
one of the few approaches which included proofs of correctness. Similarly, Bordini et al. (2009) sliced 
agent-based systems written in the AgentSpeak language and proved that their approach preserved 
LTL -X using stuttering equivalence. 
    Several other authors proposed slicing approaches for reducing state explosion but did not provide 
full proofs of correctness. Odenbrett et al. (2010) presented an approach for slicing AADL (Architec-
ture Analysis and Design Language) specifications in order to reduce them prior to translation into 
Promela, the input language of the SPIN model checker. They claimed that CTL*

-X properties were 
preserved, but left the proof for future work. Similarly, Schaefer and Poetzcsh-Heffter (2008) sliced 
specifications of adaptive systems as part of the MARS framework. They used consistent bisimulation 
to show that the approach preserves a variant of CTL* that does not contain the U or X operators, but 
details of the proof were not provided. Finally, van Langenhove and Hoojewijs (2006) presented an 
approach for slicing UML models for verification. The approach was claimed to preserve LTL-X  
properties, although again a full proof was not given. 
    These are all approaches for slicing specifications in order to alleviate the state explosion problem. 
The technique presented in this thesis is the first which slices Behavior Tree models for this purpose. 
Since each slicing approach involves dependency types specific to the particular language, none of the 
other approaches can be directly applied to Behavior Trees. Furthermore, no other approach is able to 
preserve properties containing the X operator. 
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    This chapter provides the background material for this thesis. Section 2.1 introduces model check-
ing, temporal logic and bisimulation. Section 2.2 explains the concepts of program slicing, as well as 
existing approaches for slicing specifications and for model reduction in the context of verification. 
Section 2.3 introduces the Behavior Engineering methodology, including the Behavior Tree notation 
and the process of translating Behavior Trees to a model checking language. 
 

2.1 Model CheckingModel CheckingModel CheckingModel Checking    
 
    Model checking is an automated verification technique, developed independently in the early 
1980’s by both Clarke and Emerson (1982) and Quielle and Sifakis (1982). The model checker takes 
two inputs: a model representing the system to be verified and a property to be checked. The model 
checker then systematically searches the state space of the model to determine whether or not the 
property is satisfied. If the property is not satisfied, the model checker returns a counterexample, 
which is a behaviour of the system that violates the property. The counterexample aids the user in 
determining the reason why the property does not hold on the model.  
    Each model checker has its own input language for specifying the model, usually describing the 
model as a transition system. The model describes the behaviour of the system. The property to be 
verified is a requirement which must hold on the model, for example a safety requirement. It is usually 
specified as a temporal logic formula.  
 
2.1.1 Transition SystemsTransition SystemsTransition SystemsTransition Systems    
 

    Transition systems describe the behaviour of systems. The behaviour is described in terms of states 
and transitions. Each system contains a set of atomic propositions. The states are differentiated by the 
atomic propositions which hold in each state. The transitions allow the system to evolve from one 
state to another. A transition system, otherwise known as a Kripke Structure, is a tuple T =               
(S, AP, L, I, →), where S is a set of states, AP is a set of atomic propositions, L  is a labelling 
function which labels each state with the set of atomic propositions that hold in that state, I  is a set of 
initial states and →⊆ S x S is the transition relation. From a particular state, there may be multiple 
transitions emanating from it. In this case, the transition to execute next is chosen non-
deterministically from the set of available transitions. An example of a simple transition system is 
shown in Figure 3. 

                                       
Figure Figure Figure Figure 3333. An Example Transition System. An Example Transition System. An Example Transition System. An Example Transition System    

 
    A path in a transition system is a sequence of states π = < s0, s1, s2, ... >, where for every si, si+1 ∈ π, 
where i ≥ 0, si → si+1. Each path is either finite or infinite. A finite path is one which terminates at 

light = on light = off 
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some state. An infinite path does not terminate. A path is said to be maximal if it is either infinite or it 
ends at a state with no outgoing transitions. The suffix of π starting at the state sj is denoted by π[sj∑ 
and the prefix of π ending at sj is denoted by πœsj]. 
    The goal of model checking is to determine whether or not the following holds, where T =            
(S, AP, L, I, →) is a transition system and φ is a temporal logic theorem: 

 T ⊨ φ,  

which represents that∀s0 ∈ I, s0 ⊨ φ. 
    Another type of transition systems is known as labelled transition systems. These are the action-
based counterparts of transition systems. A labelled transition system is a tuple (S, I, A,→), where S 
is a set of states, I  is the set of initial states, A is a set of actions and → ⊆  S  x  A  x S  is the transi-
tion relation.  The notation s → s’ is used as a shorthand for (s, a, s’) ∈ →. 
    de Nicola and Vaandrager (1995) proposed doubly-labelled transition systems, which contain the 
information of both transition systems and labelled transition systems. A doubly-labelled transition 
system has both a labelling on states and a labelling on transitions and is defined as a tuple                
(S, AP, I, L, A,→), where S is a set of states,  AP is a set of atomic propositions, I is the set of 
initial states, L: S → 2AP is a labelling function which labels each state with the set of atomic proposi-
tions that hold in that state, A is a set of actions and → ⊆ S  x  A  x S  is the transition relation. 
Doubly-labelled transition systems are useful for specifying systems that contain both state and event-
based information and allow to translate from one to the other. For example, they were used in (ter 
Beek, et al., 2011) for modelling the state and event-based aspects of UML state machines.  
 

2.1.2 Temporal LogicTemporal LogicTemporal LogicTemporal Logic    
   
    The most commonly used temporal logics are Computation Tree Logic (CTL)  (Clarke and Emer-
son (1982) and Linear Temporal Logic (LTL) (Pnueli, 1977). Both are subsets of the logic CTL* 
(Clarke et al. 1986). 
    CTL* is a logic which uses a branching time model. Branching time reflects the fact that many 
different paths are possible starting from any given state in the transition system, due to states having 
more than one outgoing transition. In CTL*, properties are expressed in terms of state formulas and 
path formulas. State formulas specify properties of states, while path formulas describe properties 
which hold on paths. The following definition gives the syntax of CTL* formulas. These definitions 
have been taken from Baier and Katoen (2008). 
 
DEFINITION 1. CTL* SYNTAX 

    A CTL* state formula ψ is defined as follows, where p ∈ AP is an atomic proposition, ψ1 and ψ2 are 

state formulas and φ is a path formula: 

 ψ = true | p | ψ1 ∧ ψ2 | ! ψ1 | Eφ 

    
    A CTL* path formula is defined as follows, where φ1 and φ2 are path formulas and ψ is a state 
formula: 
 φ = ψ | φ1 ∧ φ2 | ! φ1 | Xφ1 | φ1 U φ2 

  ∎ 
   
    A state formula can be either the value true, an atomic proposition (p), the conjunction of two state 
formulas (ψ1 ∧ ψ2), the negation of a state formula (! ψ1) or the existence of a path satisfying a parti-
cular path formula (Eφ). The operator E represents that “there exists” a path on which the given path 
formula holds. In addition, a derived operator A is often used, which represents that the given path 
formula holds “for all” paths. The operator A is derived from E as follows: Aφ ≡ ! E ! φ. In a similar 
manner, the disjunction operator can be derived from conjunction: ψ1 ∨ ψ2 ≡ ! (! ψ1 ∧ ! ψ2).  

  a 
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    A path formula can be either a state formula (ψ), the conjunction of two path formulas (φ1 ∧ φ2), 
the negation of two path formulas (! φ1), the next operator (Xφ1) or the until operator (φ1 U φ2). The 
next operator specifies that the given path formula must hold at the next state on the path. The until 
operator is used to specify that a given path formula must hold until another given path formula holds, 
i.e. φ1 U φ2 specifies that φ1 holds until a state is reached where φ2 holds. Additionally, there is a 
requirement that φ2 does eventually hold. Two derived operators, F and G, are often used. The F opera-
tor specifies that a given path formula must eventually hold, at some state in the future along the path. 
F is derived from U as follows: Fφ ≡ true U φ. The G operator specifies properties which must hold on 
all states along the path. G is derived from F as follows: Gφ ≡ ! F(!φ). As was done for state formu-
las, the disjunction operator can be derived from conjunction. 
    The following definition gives the semantics for CTL* formulas, which explains under what cir-
cumstances a state satisfies each type of formula. 
    
DEFINITION 2. CTL* SEMANTICS 

Let T = (S, AP, L, I, →) be a transition system. A CTL* state formula ψ holds in a state s ∈ S, denoted 

T, s ⊨ ψ, or simply s ⊨ ψ, according to the following, where ψ1 and ψ2 are CTL* state formulas and φ 
is a CTL* path formula:  

 s ⊨ true, 

 s ⊨ a ∈ AP iff a ∈ L (s), 

 s ⊨ ! ψ1 iff s ⊭ ψ1, 

 s ⊨ ψ1 ∧ ψ2 iff s ⊨ ψ1 and s ⊨ ψ2, 

 s ⊨ Eφ iff there exists a path π = < s0, s1, s2, ... >, such that s0 = s and π ⊨ φ. 
 

A CTL* path formula φ holds for a path π = < s0, s1, s2, ... >, denoted π ⊨ φ, according to the follow-
ing, where φ1 and φ2 are CTL* path formulas and ψ1 is a CTL* state formula: 

 π ⊨ ψ1 iff  s0 ⊨ ψ1, 

 π ⊨ φ1 ∧ φ2 iff π ⊨ φ1 and π ⊨ φ2, 

 π ⊨ ! φ1 iff π ⊭ φ1, 

 π ⊨ Xφ1 iff π[s1∑ ⊨ φ1, 

 π ⊨ φ1 U φ2 iff ∃j > 0 such that π[sj∑ ⊨ φ2 and ∀i, where 0 ≤ i < j, π[si∑ ⊨ φ1. 

  ∎ 
 
       CTL is a subset of CTL* in which every path operator (X, U, F and G) must be immediately pre-
ceded by one of the state operators A or E. Thus, some CTL* properties are not expressible in CTL,  
such as E(Xp ∧ XXq). LTL is a subset of CTL* which does not include the E operator. All properties 
are implicitly expressed over all paths. In LTL it is not possible to specify that there exists a path 
where a property holds. Even so, there are LTL properties which cannot be expressed in CTL, such as 
FGp, which models fairness. The relationship between the three logics is shown in Figure 4. CTL*

-X, 
LTL -X and CTL-X refer  to the variants of CTL*, LTL and CTL, respectively, that do not allow the use 
of the X operator. 

                        
Figure Figure Figure Figure 4444. Relationship Between CTL. Relationship Between CTL. Relationship Between CTL. Relationship Between CTL****, CTL and LTL, CTL and LTL, CTL and LTL, CTL and LTL 
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2.2         Program SlicinProgram SlicinProgram SlicinProgram Slicingggg    
     
    Slicing is an automated program reduction technique, which was originally proposed by Weiser 
(1981, 1984) for aiding developers in debugging and understanding large programs. Since then, pro-
gram slicing has been investigated extensively (see Tip (1995) and Xu, et al. (2005) for comprehen-
sive surveys), exploring its use for debugging as Weiser originally intended, as well as for new appli-
cations, including testing. The premise behind program slicing is simple: the program is reduced by 
automatically eliminating program statements that are irrelevant according to some specified slicing 
criterion, which traditionally consists of a program statement and a set of variables. The goal is to find 
the statements which are necessary in order to determine the values of those variables at the given 
point in the program.      
    Weiser’s original approach (1981, 1984) involved solving dataflow equations in order to compute 
the set of relevant statements that form the slice. Most recent approaches instead use a Program De-
pendence Graph (PDG), first proposed by Ottenstein and Ottenstein (1984), which is a graph repre-
senting the dependencies between the program statements. The slice is computed by performing a 
backwards traversal of the graph, starting at the point of interest. Figure 5 gives an overview of the 
usual slicing approach for programs. The first step is to construct a Control Flow Graph (CFG) of the 
program, which is a graph showing the control flow between the statements of the program. This CFG 
is then used to create the PDG. A slicing criterion is supplied, commonly in the form c = {s, v}, where 
s is a statement in the program and v is a set of variables of interest.  
    Next, the node in the PDG which represents the program statement from the slicing criterion is 
identified. This node is used as the starting point for a backwards traversal of the PDG. The nodes 
which are encountered during the traversal form the slice; all other nodes are discarded. 
    Slicing is computationally inexpensive. Each phase of the slicing process can be achieved in poly-
nomial time (Reps, et al., 1994). Additionally, the construction of the CFG and PDG need only be 
performed once per program. The construction of a new slice only requires a new traversal of the 
existing PDG, starting from a different node based on the new criterion. 
 

     
 Figure Figure Figure Figure 5555. Overview of Program Slicing. Overview of Program Slicing. Overview of Program Slicing. Overview of Program Slicing 

     
2.2.1 Slicing of Sequential ProgramsSlicing of Sequential ProgramsSlicing of Sequential ProgramsSlicing of Sequential Programs    
 
    The first step of slicing is to create the Control Flow Graph (CFG) of the program. A CFG is a 
directed graph G = < N, E, start, end >, where N is a set of nodes, each representing a statement in the 
program, E is a set of edges representing the flow of control, such that E = N  x N, start is the node 
representing the start of the program and end is the termination node. An edge e ∈ E, where e =       
(n1, n2), indicates that n2 is one of the nodes which can execute immediately after n1. The node n2 is 
known as an immediate successor of n1. Every node (except the end node) in the CFG has either one 
or two immediate successors. Sequential flow results in one successor, while branching conditions, 
such as if statements, result in two successors, one representing the case where the condition is true 
and the other where it is false. For this reason, the edges of a CFG may additionally be associated with 
a label indicating whether it is the true or false branch. The function label(e) returns the label associ-
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ated with the edge e. A path in a CFG consists of a sequence of nodes < n0, n1, ..., nk >, where for 
every ni, such that 0 ≤ i < k, (ni, ni+1) ∈ E. For every node n in the graph, there exists a path from start 
to n and a trace from n to end. The path from a node m to a node n is given by path(m, n). An example 
of a simple code fragment and the corresponding CFG is shown in Figure 6. Each node in the graph 
represents a statement of the program, as indicated by the numbers. The if statement at line 2 results in 
a branch in the graph. Both branches converge to node 7. 
    The Program Dependence Graph (PDG) (Ottenstein & Ottenstein, 1984) is constructed by identify-
ing dependencies between program statements using the CFG. The PDG is also a directed graph G = 
< N, E >, where N is a set of nodes, each representing a statement in the program and E is a set of 
edges such that E = N  x N. The difference is that the edges represent a dependency between two 
nodes, instead of showing control flow. Unlike the CFG, there are no start or end nodes in a PDG. An 
edge e ∈ E, where e = (n1, n2), indicates that n2 is dependent on n1. This means n2 requires n1 in order 
to execute. The two main types of dependencies in programs are control and data dependence. 
 
Control Dependence 
 
    A control dependence from node n1 to n2 indicates that n1 controls whether or not n2 will be execut-
ed. There are numerous forms of control dependence in the literature. Many of these are essentially 
the same, despite having different names (Chen & Roşu, 2006). Control dependence definitions vary 
according to concepts such as how non-termination is handled. The traditional form of control de-
pendence, as described by Tip (1995), is defined in terms of the notion of post-dominance. A node n is 
said to post-dominate a node m iff every path from m to end passes through n. The immediate post-
dominator of m is the closest post-dominator. Using these concepts, control dependence is defined as 
follows. 
 
DEFINITION 3. CONTROL DEPENDENCE 

Node n is control-dependent on node m iff: 

� ∃ π = path(m, n), where∀p ∈ π - {m, n},  p is post-dominated by n and 

1 x = 5; 

2 if (x > 2) then 

3 y = 6; 

4 else 

5 y = 7; 

6 z++; 

7 output y; 

1 

2 

3 5 
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6 

END 
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7 

Figure Figure Figure Figure 6.  A Simple Pr6.  A Simple Pr6.  A Simple Pr6.  A Simple Program and its ogram and its ogram and its ogram and its CCCCorresponding CFG.orresponding CFG.orresponding CFG.orresponding CFG. 
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� m is not post-dominated by n. ∎ 
 

    The first condition of the definition states that there is a path from m to n on which n always exe-
cutes. The second condition states that there is at least one other path from m on which n is never 
reached. The node m thereby controls whether or not n can execute, by making the decision as to 
whether or not n will be bypassed.   
    Other variations of this definition exist which are essentially the same, for example the definition of 
strong control dependence given by Podgurski and Clarke (1990), which states that a node n is con-
trol-dependent on a node m if there is a path from m to n which does not contain the immediate post-
dominator of m. 
 
Example. 
    Control dependence can be illustrated with the example in Figure 6. Let m be node 2 and n be node 
6. On the path from 2 to 6, node 5 is post-dominated by node 6, since every path from node 5 to end 
passes through node 6. This satisfies the first condition of Definition 3. Node 2 is not strictly post-
dominated by node 6, due to the other path through node 3, thereby satisfying the second condition. 
Thus, node 6 is control-dependent on node 2.  
    The definition of strong control dependence produces the same result. Node 7 is the immediate 
post-dominator of node 2. There is a path from node 2 to node 6 which does not contain node 7, so 
node 6 is strongly-control-dependent on node 2. 

 ∎ 
Data Dependence 
 
    Data dependencies exist when one node modifies the state of a variable which is referenced by 
another node. Let DEF(n) return the set of variables which are updated at node n, for example varia-
bles which are set to a new value. Let REF(n) return the set of variables which are referenced at node 
n. An example is when an If statement consists of a guard which queries the state of a variable. The 
definition states that a node n is data-dependent on a node m if n references a variable that is defined 
at m and there exists a path between them on which the variable is not re-defined. 
  
DEFINITION 4. DATA DEPENDENCE 

Node n is data-dependent on node m, iff ∃ v such that: 

� v ∈ DEF(m), 

� v ∈ REF(n) and 

� ∃ π = path(m, n), such that ∀p ∈ π – {m}, v ∉ DEF(p). 

 ∎ 
Example. 
    In the example in Figure 6, node 2 is data-dependent on node 1, because node 2 queries the state of 
variable x, while node 1 updates the state of variable x. The PDG of the CFG in Figure 6 is given in 
Figure 7. Every edge corresponds to a dependency between two of the nodes in the CFG. 

 ∎  
 
Types of Slicing 
 
    The numerous slicing algorithms currently in existence can be classified in several different ways. 
Most slicing algorithms are either static or dynamic. For dynamic slicing (Korel & Laski, 1988), the 
criterion includes the input values for the program, whereas static slicing does not make any assump-
tions about the input values and thus considers all inputs. Therefore, dynamic slicing can produce 
smaller slices than static slicing can. This notion was formalised by Binkley, et al. (2006), where they 
showed that dynamic slicing is a weaker form of static slicing. They further proved the correspond-
ence between weaker and stronger forms of slicing and the size of the slices produced. If a form of 
slicing is shown to be weaker than another, the smallest possible slices obtainable by the weaker 
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method (known as the minimal slices) will be smaller than the minimal slices of the stronger method. 
Thus, dynamic slicing produces smaller minimal slices than its static counterpart, as dynamic slicing 
is weaker. Despite this, for a particular input, the slice produced by dynamic slicing will not always 
necessarily be smaller than what would have been obtained using static slicing. The results can vary 
depending on the particular algorithm being used (Binkley, et al., 2006). Another form of slicing, 
known as conditioned slicing, lies between static and dynamic slicing. It is a form of static slicing 
which restricts the slice to statements which can execute under a specific condition.  
 

                     
 

Figure Figure Figure Figure 7777.  The PDG of the CFG in.  The PDG of the CFG in.  The PDG of the CFG in.  The PDG of the CFG in Figure Figure Figure Figure 6666.... 
 
    Another classification is whether the slicing is conducted in the forward or backward direction. 
Forward slicing identifies all the statements which can be influenced by the given slicing criterion. 
Backward slicing identifies the statements which can influence the slicing criterion. Weiser’s original 
algorithm is an example of static backward slicing.  
     
2.2.2 NonNonNonNon----terminationterminationterminationtermination    
 
    Programs often contain loops which may potentially execute infinitely, thereby preventing control 
flow from reaching any successors beyond the loop. The execution of a subsequent statement n is 
controlled by the guard of the loop, m. The traditional definition of control dependence is non-termin-
ation insensitive, since the guard m may be post-dominated by n. That is, every path from m eventual-
ly leads to n, even though it passes through the loop. The possibility that the loop may execute infi-
nitely is not taken into account. As a result, infinite loops such as this will not be identified by the 
control dependence relation and will therefore not be included in the slice. The resultant slice would 
exhibit different behaviour to the original program, because the trace in which the loop executes infi-
nitely often will not be present in the slice.  
    Podgurski and Clarke (1990) defined weak control dependence, in order to incorporate then notion 
of non-termination. They used another form of post-dominance, known as strong post-dominance.* 
Recall that a node n post-dominates a node m iff every path from m to the end node must pass through 

n. A node n strongly post-dominates a node m iff there exists an integer k ≥ 1, such that every path 
from m of length at least k must pass through n. The difference between the two forms of control 
dependence is only apparent in the presence of potentially infinite loops. Weak control dependence is 
non-termination sensitive. It therefore results in a greater number of control dependencies identified 
when computing the transitive closure of the CFG. Weak control dependence is defined as follows. 
                                                      
* Podgurski and Clarke referred to post-dominance and strong post-dominance as forward dominance and strong forward 

dominance, respectively. 
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DEFINITION 5.  PODGURSKI & CLARKE’S WEAK CONTROL DEPENDENCE† 

Node n is weakly-control-dependent on node m, iff m has two successors p and q, such that n strongly 
post-dominates p but does not strongly post-dominate q. ∎ 
 
    Chen and Roşu (2006) proposed a new form of control dependence which they called termination 
sensitive control dependence. It is designed to handle non-terminating loops by utilising termination 
information about each loop, given as annotations by the user. This form of control dependence lies 
between strong and weak control dependence, coinciding with the strong form when all loops are 
annotated as terminating and with the weak form when all loops are labelled non-terminating. 
    All of the definitions above require the control flow graph to have a single end state, a concept 
known as the unique end node property (Ranganath, et al., 2007). However, this is unsuitable for 
many modern programs, which often have multiple end points or no end points at all. This is often the 
case for reactive systems which infinitely cycle as they wait to receive input. One proposed solution is 
to modify the program in such a way as to ensure that it has a unique end node. Nevertheless, this 
solution is impractical for many modern program structures. Ranganath et al. (2007) defined new 
forms of both weak and strong control dependence which are suitable for systems with no unique end 
node. They defined control dependence over maximal paths, instead of paths which terminate at the 
end node. Similarly to maximal paths of transition systems, a maximal path of a control flow graph is 
a path that either terminates or contains an infinite loop. The definition for Ranganath et al.’s non-
termination sensitive control dependence is given below. 
 
DEFINITION 6. NON-TERMINATION SENSITIVE CONTROL DEPENDENCE 

A node n is non-termination sensitive control dependent on a node m iff m has at least two successors 
p and q such that: 

� for all maximal paths π1 from p, node n always occurs and either m = n or n strictly precedes 
any occurrence of m in π1 and 

� there exists a maximal path π2 from q on which either n does not occur or m strictly precedes 

any occurrence of n in π2. ∎ 
 

    This new form of control dependence captures the same idea behind the traditional form of control 
dependence: a node m controls a node n if m leads to two branches, one which leads to n and one 
which causes n to be bypassed. The extra conditions in this new definition are for handling paths 
which do not necessarily terminate at a given end node, but instead revert and reach m again. 
    There are further variations on control dependence, such as weak-order dependence, proposed by  
Amtoft (2008), which identifies nodes that control the order in which nodes are executed, not just 
whether or not they are executed. 
 
2.2.3 Slicing Concurrent ProgramsSlicing Concurrent ProgramsSlicing Concurrent ProgramsSlicing Concurrent Programs    
 
    The original slicing algorithms were designed for sequential programs. Concurrency presents sig-
nificant challenges due to the complex interactions between threads. Cheng (1993) was the first to 
consider slicing of programs with concurrently executing threads. Cheng used Program Dependence 
Nets, which is an extension of Program Dependence Graphs. Cheng identified dependency types that 
are associated only with concurrent processes. Zhao (1999) proposed a similar approach, also based 
on PDG’s, using multi-threaded dependence graphs for slicing concurrent Java programs. As for 
Cheng’s approach, Zhao’s graphs represented additional types of dependencies, which arise due   to 
the interactions between concurrently executing threads. Zhao focussed on communication depend-
ence and synchronisation dependence. 
    The techniques of Cheng and Zhao were both based on a graph reachability problem and therefore 
assumed transitivity for all dependence edges in the graph. This assumption is correct for control and 

                                                      
† Podgurski and Clarke used the term direct weak control dependence instead of weak control dependence and used the term 

weak control dependence to refer to the transitive closure of direct weak control dependence. 
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data dependence, as these operate on sequential paths. However, data dependence between parallel 
threads is intransitive, so this assumption can lead to inaccurate slices (Krinke, 1998). 
    Krinke differentiated between data dependence, which occurs between nodes in a single thread, and 
interference dependence, which occurs between nodes in parallel threads. He proposed a solution to 
handle the intransitivity of interference dependence based on the notion of a threaded witness in a 
threaded version of the CFG. A threaded witness is a sequence of statements which form a possible 
execution path of the program. Statements are not included in a slice if they do not form a threaded 
witness of the program.  
    Krinke’s algorithm for computing threaded witnesses makes use of a tuple which records the last 
visited node for each thread. When a new node is reached in the backwards exploration of the depend-
ency graph, the algorithm checks whether there is a valid path from the new node to the last visited 
node in that thread. If not, the new node is not included in the slice because it does not form a threaded 
witness. If there is a path, the new node is recorded in the tuple as the last encountered node for that 
thread.  
    Nanda and Ramesh (2000, 2006) showed the algorithm to be imprecise in the case of nested 
threads. Consider the example CFG shown in Figure 8. The CFG shown is a threaded CFG in the 
style used by both Krinke (1998) and Nanda and Ramesh (2000, 2006). It begins with an initial thread 
θ0, which then spawns two new threads θ1 and θ2. After executing some behaviour, these two threads 
exit and the control flow converges back to θ0. Threads θ1 and θ2 are known as nested threads. Since 
each thread is considered separately when computing the threaded witness, the algorithm maintains a 
tuple containing the last visited node for each of the three threads. Assume that the algorithm has just 
explored a node n1 in θ0. The tuple would now be [n1, ⊥, ⊥], where ⊥ represents that no node has 
been encountered for that thread so far. If n1 was interference-dependent on a node n2 in θ2, then this 
node will be included in the slice, because no node has so far been visited in that thread. This is im-
precise because n1 can never depend on n2 which executes after it. The solution proposed by Nanda 
and Ramesh  (2000, 2006) is to store information on the last node traversed in each set of sequentially 
operating threads, instead of in each individual thread. When a node is encountered, its label is not 
only recorded as the last node traversed in its own thread, but also in its parent and child threads. In 
the example, n1 would be recorded in the place for thread θ0, as well as for θ2, i.e. the tuple would be 
[n1, ⊥, n1]. Then when n2 is explored, it will not be included in the slice because n1 cannot be reached 
from n2.  
    Nanda and Ramesh (2006) also showed Krinke’s approach to be imprecise when handling threads 
in nested loops. Assume there is a node nx with an ancestor ny. Further assume that nx is dependent on 
another node nz. There are cases in which nz cannot influence nx because its update is always overid-
den by the ancestor ny. In these cases, including nz would decrease the precision of the slice.  
 

 
Figure Figure Figure Figure 8888. Example CFG of a Java Program, using the Threaded CFG style of . Example CFG of a Java Program, using the Threaded CFG style of . Example CFG of a Java Program, using the Threaded CFG style of . Example CFG of a Java Program, using the Threaded CFG style of     

Krinke (1998) and Nanda and Ramesh (2000, 2006)Krinke (1998) and Nanda and Ramesh (2000, 2006)Krinke (1998) and Nanda and Ramesh (2000, 2006)Krinke (1998) and Nanda and Ramesh (2000, 2006)....    
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    Further reductions were suggested by Ranganath and Hatcliff (2004), who proposed a technique to 
identify interference edges which can be removed as they correspond to objects which are only ever 
accessed by a single thread. Since interference dependence occurs when an object is written in one 
thread and read by another, objects which are only accessed by a single thread cannot generate inter-
ference dependencies. This allows the number of interference dependence edges in the PDG to be 
reduced.    
 
2.2.4 Program Slicing vs. Slicing of ModelsProgram Slicing vs. Slicing of ModelsProgram Slicing vs. Slicing of ModelsProgram Slicing vs. Slicing of Models    
 
    Program slicing has been investigated extensively. In comparison, slicing of specifications has 
received less attention. The earliest attempt at slicing specifications was that of Oda and Araki (1993), 
for slicing Z specifications. Their purpose was to improve the understanding of large specifications. 
Wu and Yi (2004) later proposed another approach for slicing Z specifications using PDG’s. Other 
similar approaches include slicing of UML models (Lano & Kolahdouz-Rahimi, 2010), CSP (Silva, et 
al., 2008), use case maps (Hassine, et al., 2005), hierarchical state machines expressed in the RSML 
language (Heimdahl & Whalen, 1997), Extended Finite State Machines (Korel, et al., 2003) and 
statecharts (Luangsodsai & Fox, 2010).  
    The traditional program slicing techniques can be adapted to suit various languages, including 
specification and modelling languages. The exact modifications that are required depends on the 
language of interest. It is usually necessary to consider the underlying semantics of the language to 
determine the types of dependencies. In some cases, the definitions of control and data dependence for 
programs can be easily adapted to the modelling language. For example, when slicing Extended  
Finite State Machine (EFSM) models, Korel et al. (2003) defined control and data dependencies in 
terms of states and transitions in the model, instead of nodes in the control flow graph. Similarly, 
Labbé and Gallois (2008) proposed an approach for slicing communicating automata specifications by 
adapting the control dependence definition of Ranganath et al. (2007). Again, they defined control 
dependence in terms of transitions in the specification, instead of nodes in the control flow graph. 
Furthermore, they incorporated Krinke’s threaded witness approach (1998) into their definition for 
data dependence, by including the condition that there must be a valid path in the specification corre-
sponding to each dependency path.  
    The modelling languages may contain constructs which do not match programming language con-
cepts. In these cases, new dependence definitions may be necessary. Labbé et al. (2007) defined a new 
type of dependence known as communication dependence, in order to handle the communication 
which may occur between two automata. The interference control dependence of Luangsodsai and 
Fox (2010), used for slicing statecharts, also performs a similar purpose. Interference control       
dependence occurs when an event in a statechart is triggered by a parallel action. Wu and Yi (2004) 
introduced a new type of control dependence known as logic dependence, in order to represent the 
dependencies between post-conditions and pre-conditions in Z schemas. Brückner (2007) defined 
several new types of dependencies for slicing CSP-OZ-DC specifications, including timing depend-
ence, the dependence arising from real-time properties specified in the DC part of the specification.  In 
some cases, traditional dependencies may be found to be unnecessary. For example, interference 
dependency was found to be unnecessary when slicing Rebeca models (2010), as there are no shared 
variables between parallel objects. As these examples show, the definitions and algorithms for pro-
gram slicing can be adapted to other types of languages. Each language would require different varia-
tions on the traditional program slicing definitions, according to the semantics of the language. 
    The purpose of performing the slicing is also relevant to how the dependencies should be defined. 
When slicing is used for debugging or understanding, the slice does not need to be executable. An 
executable slice is one which has the proper syntax of the programming language and so can be exe-
cuted. When slicing for verification, the slice must be executable, in order for it to be used by the 
model checker. Another factor which is of more importance for slicing for verification is non-
termination. As discussed by Ranganath et al. (2007), if the goal is only to aid the user in understand-
ing large specifications, not for formal verification, then it might not be important to ensure that non-
termination will be preserved.  
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Slicing Criterion 
     
    Slicing for reduction of models or programs prior to verification has been classified as Proposition-
Based Slicing by Silva (2011). The main difference that arises when slicing for verification is the 
slicing criterion. When slicing for debugging or understanding, the criterion is usually given in the 
form of a program statement of interest and a set of variables. On the other hand, slicing used in the 
context of verification uses a criterion based on the temporal logic formula to be verified. This must 
be converted into the set of nodes from which the traversal of the dependence graph must begin. The 
approach can thus be classified as simultaneous static slicing (Danicic, et al., 1995), because there are 
several starting nodes for the slicing process. The most comprehensive work on slicing programs for 
verification is that of the Indus slicer (Dwyer, et al., 2006), which slices Java programs and operates as 
part of the Bandera model checking framework. The slicer incorporates concepts such as termination 
sensitive control dependence and interference dependence.  
    There has been recent interest in slicing models and specifications for verification. Several ap-
proaches have been proposed for various different languages, as discussed in Section 1.2. All of the 
existing approaches for slicing for verification use essentially the same process for deriving the start-
ing nodes from the temporal logic theorem. First, the atomic propositions in the formula are identified. 
Then, any nodes which directly modify the truth value of one or more of these propositions become 
the slicing criterion. For example, Van Langenhove and Hoogewijs (2006), when slicing for verifica-
tion of UML diagrams, considered the slicing criterion to be any states or transitions in the UML 
model which directly modify a variable in the temporal logic theorem. 
    This approach is the simplest and least computationally expensive, but it can sometimes lead to 
unnecessary nodes being included into the slice. Vasudevan et al. (2005) proposed a method for fur-
ther reducing the slice if the property conforms to certain specific formats, such as LTL formulas in 
the format G(p ⇒ Fq). The slices were reduced by removing areas of the slice in which the property 
holds vacuously due to the antecedent of the formula evaluating to false. 
 
Slicing Precision and Correctness 
 
    The most desirable slice would be the smallest possible slice: one which contains exactly all of the 
statements which influence the criterion and no more. This is known as the optimal slice. However, 
Weiser (1984) showed this to be undecidable, because the outcome of conditions, such as the guards 
of if statements, is undecidable in general. Müller-Olm and Seidl (2001) further showed that finding 
the optimal slice for multi-threaded programs without synchronisation or procedure calls is PSPACE-
hard and for multi-threaded programs without synchronisation or loops it is NP-hard. They concluded 
that there can be no efficient optimal slicing algorithm for concurrent programs. 
    Since the optimal slice is unattainable, the goal in slicing is to obtain a slice which is as precise as 
possible while still maintaining correctness. Precision refers to the size of the slice. The fewer state-
ments in the slice, the more precise it is. Nevertheless, precision cannot be achieved at the price of 
correctness. It is essential that the slice is correct. A correct slice is one which contains all of the 
statements which are relevant to the criterion. An incorrect slice is one which is missing some neces-
sary statements and will therefore exhibit behaviour which is different than the original program. This 
requirement is especially important when slicing is applied for model checking, because the slice must 
satisfy the same properties as the original model. A slice which is correct but also contains unneces-
sary statements is referred to as a conservative slice. The largest conservative slice is the entire pro-
gram itself. 
    An important consideration when creating a slicing algorithm is therefore to ensure that the slices 
produced are correct. Correctness can be defined in several ways. Weiser (1984) used a notion of 
projection to define correctness. A slice must exhibit a projection of the behaviour of the original 
program, with respect to the variables and the program statement given in the slicing criterion. 
Weiser’s definition restricts slicing to programs with terminating behaviour.  
    Podgurski and Clarke (1990) defined correctness using what they refer to as semantic dependence. 
Semantic dependence occurs between two statements if a change in the semantics of one statement 
can affect the execution of the other. The observation of Weiser (1984) shows that identifying all such 
semantic dependencies is undecidable in general. However, Podgurski and Clarke demonstrated a 
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useful relation between semantic dependence and syntactic dependence. Syntactic dependence is 
simply the transitive closure of control and data dependencies. Strong syntactic dependence occurs 
between two statements if the statements are linked transitively by strong control dependence or data 
dependence, whereas weak syntactic dependence occurs if the statements are linked transitively by 
weak control dependence or data dependence. Podgurski and Clarke showed that semantic depend-
ence implies weak syntactic dependence but not strong syntactic dependence. In other words, the 
possible non-termination of loops can result in a semantic dependence between two statements and 
must therefore be taken into consideration when slicing, in order to produce slices which are correct. 
    The notion of correctness is sensitive to the purpose of the slicing algorithm and the semantics of 
the language under consideration. For example, although Podgurski and Clarke’s semantic depend-
ence was sufficient for their purposes, Kumar and Horwitz (2002) found this definition to be insuffi-
cient for handling programs with unstructured control flow, such as go-to or jump statements. They 
provided an extension of semantic dependence which includes such jump statements.  
    When slicing is used for reduction of models for verification, the notion of correctness is related to 
the preservation of properties. It is essential that both the slice and the original model preserve the 
same set of properties, thereby guaranteeing that a verification result obtained using the slice is the 
same as what would have been obtained if the original model had been used. The correctness of the 
Indus slicer, which slices Java programs, was shown using a notion of projection (Hatcliff, et al., 
1999; Hatcliff, et al., 2000), similar to Weiser’s projection to demonstrate that their approach pre-
serves LTL-X properties. The difference between Weiser’s projection and the projection of Hatcliff et 
al. is due to the slicing criterions. Weiser used slicing criterions that included both a program state-
ment and a set of variables of interest. When slicing for verification, the criterion normally only con-
sists of a set of nodes without any specific variables of interest. Thus, in the definition of projection 
given by Hatcliff et al., the variables of interest correspond to the ones referenced by the nodes in the 
criterion. This approach has also been used by other authors for discussing the correctness of slicing.  
    Similarly, Rakow (2008) developed an approach for slicing Petri Nets which is guaranteed to pre-
serve LTL-X  properties. Wasserrab et al. (2009) provided a general framework for proving the cor-
rectness of slicing. They used the theorem prover Isabelle to verify their proof. The framework allows 
any backwards static intraprocedural slicing algorithm to be easily proved by simply showing that the 
CFG and the control dependence relation satisfy certain properties. They used a weak simulation 
relation to show the correctness of slicing. However, since their purpose was not verification, they did 
not relate the weak simulation relation to any form of temporal logic. The approach by Brückner 
(2007), for slicing CSP-OZ-DC, was shown to preserve properties specified in Duration Calculus. 
Ranganath et al. (2007) showed the correctness of their slicing approach by relating the original pro-
gram and the slice using a weak bisimulation relation. Weak bisimulation is especially suited for 
slicing as it allows for the presence of invisible steps. The nodes in the slicing criterion can be consid-
ered to be the observable steps, while all others are stuttering, corresponding to the invisible steps in 
the weak bisimulation. In the next section, the concepts of bisimulation will be introduced. 
     
2.2.5 BisimulationBisimulationBisimulationBisimulation    
 
    Bisimulation is a commonly used technique for proving equivalence between two transition sys-
tems. It can be divided into the strong and weak forms. Strong bisimulation requires that every step 
that is made in one transition system is matched by a step in the other system, as given by the follow-
ing definition. In this section, all the definitions will be given in terms of doubly-labelled transition 
systems, as these will be used as in the next chapter to represent the underlying framework of Behav-
ior Trees. 
 
DEFINITION 7.  BISIMULATION  

Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii, Li, Ai, →i), for i ∈ {1,2}. 

A relation R is a bisimulation iff for every s R  t, where s ∈ S1 and t ∈ S2, the following holds: 
 
 



Program Slicing  
 

19

1a) ∀s’  ∈ S1 and a ∈ A1, such that s → s’, ∃ t’∈ T2 such that t → t’ and s’  R t’ and 

1b) ∀t’  ∈ S2 and a ∈ A2, such that t → t’, ∃  s’∈ T1 such that s → s’ and s’  R t’. 
   

T1 and T2 are bisimilar, denoted T1 ⇌ T2, iff there exists a bisimulation R, such that s0 R  t0 for all s0 ∈ 

I1 and t0 ∈ I2. 

            ∎∎∎∎ 
 
    On the other hand, the weak forms of bisimulation allow for the presence of invisible τ steps, which 
do not have to be matched by the other system. Since slicing removes transitions from the transition 
system, the resulting paths would contain fewer steps than the equivalent paths in the original. Strong 
bisimulation is therefore unsuitable for establishing the equivalence between a model and its slice. 
The stuttering transitions, which do not form part of the slicing criterion, can be thought of as invisible 
or silent steps which the slice is not required to emulate. Using this approach, the weak forms of bi-
simulation are appropriate for establishing equivalence for slicing. 
    Two common forms are weak bisimulation (Bloom, 1995) and branching bisimulation (van 
Glabbeek & Weijland, 1996). These forms of bisimulation are defined over labelled transition sys-
tems. Weak bisimulation, as defined in (Bloom, 1995) is a direct modification of strong bisimulation. 
Instead of requiring each step in one system to be matched by another, it requires that each observable 
step in one system be matched by an observable step in the other system, preceded by any number of 
invisible τ steps. This definition would appear to be an effective method for applying bisimulation 
concepts to systems with stuttering steps. However, there are cases where it is not suitable, as weak 
bisimulation cannot distinguish between two systems which perform identical steps but have different 
branching structures. In order to differentiate between two systems such as this, van Glabbeek and 
Weijland (1996) proposed an equivalence known as branching bisimulation. Branching bisimulation 
is similar to weak bisimulation, except that it differentiates between two systems that have different 
branching behaviour. Branching bisimulation is defined in the following definition, where s ⇢ s’ 
denotes a stuttering step and s ⇢*

  s’ denotes zero or more stuttering steps. 
 
DEFINITION 8. BRANCHING BISIMULATION  

Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii, Li, Ai, →i), for i ∈ {1,2}. 

A relation R is a branching bisimulation iff for every s R  t, where s ∈ S1 and t ∈ S2, the following 
holds: 

1a) ∀s’  ∈ S1 and a ∈ A1, such that s → s’, either s ⇢ s’ and s’ R  t or 

∃ t’ , t’’  ∈ S2 such that t ⇢*  t’’ → t’,  s R  t’’ and  s’  R t’ and 
 

1b) ∀t’ ∈ S2 and a ∈ A2,  such that t → t’, either t ⇢ t’  and t ’  R  s or 

∃ s’ , s’’  ∈ S2 such that s ⇢*  s’’ → s’,  s’’  R  t and  s’  R  t’. 
   
T1 and T2 are branching-bisimulation equivalent iff there exists a branching bisimulation R, such that 

s0 R  t0 for all s0 ∈ I1 and t0 ∈ I2. 

            ∎∎∎∎ 
 
    As with weak bisimulation, branching bisimulation requires every observable step in one system 
to be matched in the other system by a sequence of zero or more stuttering steps followed by a match-
ing observable step. The difference is that the intermediate state t’’, that is reached after the stuttering 
steps, has to be related to the first state in the original model, s. 
    De Nicola and Vaandrager (1995) showed the relation between branching bisimulation and its state-
based counterpart, stuttering bisimulation, defined over Kripke structures. Stuttering bisimulation is 

 a 

 a 

 a 

 a 

  a 

  a 

  a 

  a 
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known to preserve CTL*-X properties. De Nicola and Vaandrager used doubly-labelled transition 
systems to develop a conversion function to translate between labelled transition systems and Kripke 
structures. Using this, they established the equivalence between branching bisimulation and diver-
gence-blind stuttering bisimulation. Divergence refers to infinite stuttering paths. These are ignored 
by divergence-blind stuttering bisimulation, which therefore preserves only a variant of CTL*

-X de-
fined over finite paths only. As branching bisimulation is equivalent to divergence-blind stuttering 
bisimulation, it also only preserves CTL*

-X over finite paths. Since the usual definition of CTL* is 
defined over maximal paths, it is necessary to ensure that infinite stuttering paths are preserved. Di-
vergence-sensitive stuttering bisimulation preserves CTL*-X over maximal paths. De Nicola and 
Vaandrager showed that divergence-sensitive branching bisimulation, a variant of branching bisimula-
tion, is equivalent to divergence-sensitive stuttering bisimulation and therefore preserves CTL*

-X  over 
maximal paths. 
    For their definition of divergence-sensitive branching bisimulation, De Nicola and Vaandrager did 
not directly incorporate the notion of divergence into the definition. Instead, they created an extra state 
in the transition system to represent divergence and linked all divergent states to that new state. How-
ever, as noted by van Glabbeek et al (2009), using this method, livelocked states cannot be distin-
guished from deadlocked states. Livelocked states are ones which have self loops, while deadlocked 
states are ones which have no outgoing transitions. van Glabbeek and Weijland (1996) proposed a 
new version, called branching bisimulation with explicit divergence, which incorporates the diver-
gence requirement into the definition itself, instead of making modifications to the transition system. 
The definition for branching bisimulation with explicit divergence is given in Definition 9, taken from 
van Glabbeek et al. (2009a). Branching bisimulation with explicit divergence was shown to preserve 
CTL*

-X by van Glabbeek et al. (2009b). This result has been re-stated as Theorem 1 below. They 
further showed that their definition is equivalent to other forms of divergence present in the literature 
(van Glabbeek, et al., 2009a).  
 
 
DEFINITION 9. BRANCHING BISIMULATION WITH EXPLICIT DIVERGENCE 
Let T1, T2 be labelled transition systems such that Ti = (Si, APi, Ii, Li, Ai, →i), for i ∈ {1,2}. 

A relation R  is a branching bisimulation with explicit divergence iff for every s R  t, where s ∈ S1 and 

t ∈ S2, the following holds: 

1a) ∀s’  ∈ S1 and a ∈ A1, such that s → s’, either s ⇢ s’ and s’ R  t or 

∃ t’ , t’’  ∈ S2 such that t ⇢*  t’’ → t’,  s R  t’’ and  s’  R t’, 
 

1b) ∀t’ ∈ S1 and a ∈ A2, such that t → t’, either t ⇢ t’  and t ’  R  s or 

∃ s’ , s’’  ∈ S2 such that s ⇢*  s’’ → s’,  s’’  R  t and  s’  R  t’, 
 

2a) if there is an infinite path s ⇢ s0  ⇢ s1 ⇢..., such that si R  t, ∀i ≥ 0,  then there exists 

an infinite path t ⇢ t0  ⇢ t1  ⇢ ...., such that tj R  si, ∀i, j ≥ 0, and 
 

2b) if there is an infinite path t ⇢ t0  ⇢ t1 ⇢..., such that ti R  s, ∀i ≥ 0,  then there exists 

an infinite path s ⇢ s0  ⇢ s1  ⇢ ...., such that sj R  ti, ∀i, j ≥ 0, 
   

T1 and T2 are branching-bisimulation with explicit divergence equivalent, denoted T1 ≜ T2, iff there 

exists a branching bisimulation R, such that s0 R  t0 for all s0 ∈ I1 and t0 ∈ I2.    

        ∎∎∎∎ 
 

 

 a 

 a 

 a 

 a 
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THEOREM 1. BRANCHING BISIMULATION WITH EXPLICIT DIVERGENCE PRESERVES CTL*-X   

For two transition systems T1 and T2, T1 ≜T2 ⇒ (T1 ⊨φ ⇔ T2 ⊨ φ, for all φ ∈ CTL*
-X). 

 
Proof. 
This result was proven by van Glabbeek et al. (2009b). p 
 
2.3 Behavior TreesBehavior TreesBehavior TreesBehavior Trees    

     
    Formal methods are essential for building correct and safe systems. Despite this, there is often a 
large gap between the informal requirements provided by the user and the formal specification of the 
system. The Behavior‡ Engineering process aims to close this gap (Dromey, 2003, 2005), by provid-
ing a rigorous translation scheme from the informal textual requirements to the formal model, and 
maintaining strong links between them. The Behavior Engineering process, created by Dromey (2003, 
2005), consists of three types of models: Behavior Trees, Composition Trees and Structure Trees. As 
their names suggest, Behavior Trees model the behaviour of a system, Composition Trees define the 
composition, such as which components belong to the system, and Structure Trees model the struc-
ture, i.e. how the components fit together. In this thesis, only Behavior Trees will be considered, as 
this is the type of model which is used as the input for model checking. Behavior Trees have a formal 
semantics (Colvin & Hayes, 2011). The Behavior Engineering process is illustrated in Figure 9.  The 
process begins with a set of informal textual requirements. Each requirement is first translated into an 
individual Requirement Behavior Tree (RBT). Next, all of the RBT’s are merged together to create an 
Integrated Behavior Tree (IBT). The IBT is then transformed into a Design Behavior Tree (DBT), by 
making design decisions. This DBT can then be verified, by automatic translation into a model check-
ing language (Grunske, et al., 2008), simulated (Wen, et al., 2007) or used in a model-driven engineer-
ing framework to produce an implementation (Myers, 2010).  
 
 

                               
Figure Figure Figure Figure 9999. Behavior Engineering Process. Behavior Engineering Process. Behavior Engineering Process. Behavior Engineering Process    

 
                                                      
‡ The names Behavior Engineering and Behavior Trees have been trademarked using the American spelling and capitals for 

each word. When not referring to these proper nouns, the British spelling of behaviour will be used. 
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2.3.1 Behavior Tree NotationBehavior Tree NotationBehavior Tree NotationBehavior Tree Notation    
 
    Behavior Trees are graphical models in a tree-like form. Nodes are represented as rectangular boxes 
which contain information on the behaviour that has taken place, as well as an identifier linking it to 
the original textual requirement that it came from. Branches are used to model either alternative 
choices or parallel threads. Contrary to its name, however, Behavior Trees are not actual trees, but 
instead are directed cyclic graphs. This is due to the presence of reversion and reference nodes at the 
leaf nodes of threads, which transfer the control flow to another location in the tree. The full syntax of 
Behavior Trees is given in the Behavior Tree Notation Document v.1.0 ("Behavior Tree Group, Be-
havior Tree Notation v1.0," 2007). In this thesis, only the subset of the syntax that is used for transla-
tion into the model checking languages will be considered. For example, relational behaviour will not 
be covered as it is not currently included in the translation process. The treatment of the excluded 
language features remains as future work. 
    A Behavior Tree consists of nodes and edges. The parts of a node are shown in Figure 10. The 
component is the name of the component or attribute which is performing some behaviour. The name 
of the behaviour is given below it. The node type is indicated by the symbols on either side of the 
behaviour name. Some nodes may additionally have a flag§. The box on the left is the requirements 
tag, which is an identifier linking the node back to the original textual requirements of the system.  

               
Figure Figure Figure Figure 10101010. . . . A Behavior Tree NodeA Behavior Tree NodeA Behavior Tree NodeA Behavior Tree Node 

 
Figure 11 shows the possible node types: 

(a) State-realisation: The component C is updated to the state s. 
(b) Selection: Control flow passes through this node if the component C is currently in 

the state s. If not, the thread terminates. 
(c) Guard: Control flow passes through this node if the component C is currently in the 

state s. Unlike selections, if C is not in state s, the control flow waits at this location 
until the condition becomes true. Note that in the rest of this thesis, the guard will be 
referred to as BTguard, in order to avoid confusion with other notions of guards. 

(d) Internal Input Event: The component C receives a message m from another compo-
nent in the same Behavior Tree. There must be at least one internal output event 
node in the Behavior Tree sending the message m. 

(e) Internal Output Event: The component C sends a message m to another component 
in the same Behavior Tree. There must be at least one internal input event node in 
the Behavior Tree receiving the message m. 

(f) External Input Event: The component C receives a message m from the external en-
vironment. 

(g) External Output Event: The component C sends a message m to the external envi-
ronment. 

                                                      
§ The flag was referred to as the operator in the Behavior Tree Notation Document v. 1.0 ("Behavior Tree Group, Behavior 

Tree Notation v1.0," 2007), but was known as the flag in previous work. 
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                                    Figure Figure Figure Figure 11111111. Behavior Tree Node Types. Behavior Tree Node Types. Behavior Tree Node Types. Behavior Tree Node Types    

 
    Additionally, nodes may refer to attributes of components, by replacing the behaviour name with 
an expression involving an attribute. For example, if a state realisation node has a component name of 
C and a behaviour of  A := b, it represents that the attribute A of component C has realised state b. In 
addition to realisation of states, attributes can be assigned to numerical values using attribute expres-
sions, such as A := A + 1. Selection and guard nodes can have any boolean expression involving an 
attribute, such as A > 5 or A = b.  
    Nodes which involve a conditional test, i.e. nodes of type selections, BTguards, internal input 
events and external input events, will be referred to in this thesis as conditional nodes. 
    The nodes are joined together using arrows, representing the control flow. Sequential flow is mod-
elled using a normal arrow, as depicted in Figure 12 (a), while atomic connections are modelled using 
a straight line, as shown in Figure 12 (b). Atomic nodes represent uninterruptible sections of behav-
iour; i.e. no node in another thread can interrupt the atomic block. 

 
                                    Figure Figure Figure Figure 12121212. Sequential and Atomic C. Sequential and Atomic C. Sequential and Atomic C. Sequential and Atomic Control Flowontrol Flowontrol Flowontrol Flow    
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     There are two forms of branching in Behavior Trees: concurrent and alternative. Concurrent 
branching, as shown in Figure 12 (c) represents parallel threads. In the example, after the node A[a] 
executes, the two nodes B[b] and C[c] and their sub-trees execute in parallel, i.e. in any possible inter-
leaving order. Alternative branching, shown in Figure 12 (d), represents a choice between two possi-
bilities in a single thread. In the example, either the node B[b] or the node C[c] will be selected. When 
one branch is chosen, the other immediately terminates. As for concurrent branching, the nodes may 
be of any type. However, there is one restriction for alternative branching: either all the branches 
begin with a selection node or none of them.  
    Behavior Trees are designed to be able to model infinite behaviour. This is accomplished by the use 
of reversion and reference nodes, which cause the control flow to jump to another location in the tree. 
These two types of nodes are shown in Figure 13 (a) and (b), respectively. Reversion nodes are mod-
elled using the “^” symbol and reference nodes are modelled using the “=>” symbol. Both reversion 
and reference nodes must be leaf nodes. Reversions cause the control flow to revert to a location 
higher up in the tree. The new location is referred to as the target of the reversion. The target must be 
an ancestor of the reversion node. Reference nodes are similar, however they cause the control flow to 
jump to another location which is not necessarily an ancestor. The target of a reference node must be 
in the same thread, but may be in an alternative branch. Reversion and reference nodes can be any 
type of node. The target nodes are identified by locating a node with the same component name, 
behaviour name and type. Another property of reversion nodes is that when a reversion executes, 
every thread which was a descendent of the target node is terminated. The purpose of this is to avoid 
having sub-threads continue to execute while their parent thread has re-started.  
    Figure 13 (c) shows a thread kill node. The purpose of thread kill nodes is to terminate another 
thread. Figure 13 (d) shows a synchronisation node. Control flow remains blocked at this node until 
all of the other nodes involved in the synchronisation have been reached. In this thesis, these nodes 
will be referred to as the synchronising partners. The synchronising partners are identified by finding 
other nodes with the synchronisation flag. When all of the synchronising partners are ready to execute, 
the node may execute. If the synchronisation node is a conditional node, its condition is only evaluat-
ed after all of its synchronising partners have been reached. Note that a synchronisation flag can be 
used in conjunction with one of the other types of flags, in order to cause a reversion, reference or 
thread kill node to synchronise. 

          
                                   Figure Figure Figure Figure 13131313. Behavior Tree . Behavior Tree . Behavior Tree . Behavior Tree FlagsFlagsFlagsFlags    

 
 
   Behavior Trees are able to handle set operations. The syntax for this is shown in Figure 14. In the 
nodes in the figure, S and T are set attributes of the component C. The same set operations can also be 
performed on sets that are components themselves. The nodes correspond to the following: 

(a) Addition to a set: The element x is added to the set S. 
(b) Subtraction from a set: The element x is removed from the set S. 
(c) Set intersection:  The set S is updated to the intersection of sets S and T. 
(d) Set union:  The set S is updated to the union of sets S and T. 
(e) Set difference:  The set S is updated to the difference between sets S and T. 
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(f) Set membership:  The condition is true if the element x belongs to the set S. This 
node can also be a BTguard type. 

(g) Set cardinality:  The condition is true if the set S contains greater than k elements. 
The expression can contain either <, > or =. This node can also be a BTguard type. 

 
                                    Figure Figure Figure Figure 14141414. Set Operation Nodes. Set Operation Nodes. Set Operation Nodes. Set Operation Nodes    

 
    In this thesis, the following auxiliary functions will be used, to refer to the various elements of the 
Behavior Tree notation. The function comp(n) returns the component name of node n and behav(n) 
return the behaviour name of node n. If the node defines or uses an attribute, attr(n) returns the attrib-
ute and attrExp(n) returns the expression involving the attribute. Note that a unique name for the 
attribute is given comprising the component and attribute names, to avoid confusion if other compo-
nents have attributes of the same name. For example, if the node is C ?A = b?, attr(n) would return 
C_A and attrExp(n) would return “C_A = b”. The type of a node is given by the function type(n) and 
the flag by the function flag(n). Two or more nodes are designated as matching if they have the same  
component name, behavior and type. If matching(p,q) then comp(p) = comp(q), behav(p) = behav(q) 
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and type(p) = type(q). The function target(n) returns the target node of n, if n is a reversion, reference 
or thread kill; it is undefined for all other nodes.   
    For a set operation node n, the functions comp(n), behav(n), attr(n) and attrExp(n) operate in the 
same manner as for non-set nodes, treating the set name as either a component or attribute name and 
the expression involving the set as either a behaviour name or attribute expression. Additionally, 
Behavior Trees have for-all and for-one nodes, as depicted in Figure 15 (a) and (b), respectively. The 
nodes specify that the sub-trees below should be evaluated over all or one of the elements x in the set 
S. This is accomplished by expanding the sub-tree below to have one branch for each element in the 
set. In each branch, every occurrence of x is replaced by one of the elements in the set. If it is a for-all 
node, the branches are joined by a concurrent branching point, while if it is a for-one node, they are 
joined by an alternative branching point. An example of this is depicted in Figure 15 (c). Assume the 
set S contains two elements: p and q. The sub-tree below the for-all node is replaced by two branches, 
one for the element p and the other for the element q.  
     If conc(p,q) then nodes p and q are in concurrent threads. If alt(p,q) then nodes p and q are in 
alternate branches of the same thread. In this thesis, a node with multiple children, such as A[a] in the 
figures, will be referred to as a branching node. If there is an edge linking node m to node n, then m is 
the parent of n, given by parent(n). The node n is referred to as a child of m. Note that in Behavior 
Trees, a node may have zero or more children, given by the function children(n), but only one parent. 
The function childNum(n) returns the number of children of n and the function child(n, i) returns the 
ith child of n. Every node has a parent except the root node. The set ances(n) gives the ancestors of n, 
where ances(n) = parent(n) ∪ ances(parent(n)). The set desc(n) gives the descendents of n, which are 
the nodes that have n as an ancestor. The descendents of a node n form a sub-tree with n as its root. A 
node is not an ancestor nor a descendent of itself. 
    In this thesis, as a convention each function may additionally be given a sub-script denoting the 
Behavior Tree it refers to. For example, compb(n) returns the component name of node n in Behavior 
Tree b. 
 
2.3.2 RequirementsRequirementsRequirementsRequirements    Translation andTranslation andTranslation andTranslation and    IntegrationIntegrationIntegrationIntegration    
 
    The first step in the Behavior Engineering process is to create individual RBT’s for each require-
ment. The intent of Behavior Engineering is to provide a mechanism for creating a formal model “out 
of its requirements instead of from its requirements” (Dromey, 2003, 2005), which is accomplished by 
proposing a rigorous approach for requirements translation. Each sentence of the textual requirement 
is translated into nodes by identifying the components and behaviour described. The nodes are given 
tags corresponding to the label of the requirement, to maintain traceability to the requirements docu-
ment.  
    Next, each of the RBT’s are merged together into an IBT. The root node of each RBT must match  
a node in the IBT. This represents the point at which the pre-condition of the RBT is established, so 
that is the location where the RBT should be inserted. If no matching node can be found, it indicates 
that some information is missing from the requirements, since the required pre-condition never occurs. 
This must then be rectified by consultation with the clients or by making assumptions. If an assump-
tion is made, it is noted in the tag of the corresponding nodes using a “+” symbol to indicate an im-
plied requirement or a “-” to indicate a missing requirement. Additionally, while normal nodes are 
coloured green, nodes indicating implied behaviour are coloured yellow and nodes indicating missing 
behaviour are coloured red. For the purposes of this thesis, the tags and colours are irrelevant, as the 
slicing approaches that follow can be applied to any nodes regardless of their colour or tag infor-
mation. Accordingly, in some of the diagrams that follow, the  nodes may not have any colour and the 
tags may be left blank. The following example illustrates the process of integrating RBT’s. 
 
Example. 
Consider the RBT shown in Figure 16 on the right, corresponding to a requirement numbered R4. It 
states that when the oven is cooking, if the door is opened the powertube will be turned off. The cur-
rent IBT is given on the left of the figure. It has been created by merging requirements R1 to R3. The 
root node of the RBT is Oven [cooking]. This is the pre-condition which must be established by the 
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IBT. There is a matching Oven [cooking] node in the IBT, so the RBT is joined to the IBT at that 
position. The final IBT is given in Figure 17.  
 
 

 
Figure Figure Figure Figure 16161616....    Identifying Matching PreIdentifying Matching PreIdentifying Matching PreIdentifying Matching Pre----conditionsconditionsconditionsconditions    

 

                        
                                                                                                                    Figure Figure Figure Figure 17171717. Final IBT. Final IBT. Final IBT. Final IBT    

 
 
2.3.3 Model Checking Behavior TreesModel Checking Behavior TreesModel Checking Behavior TreesModel Checking Behavior Trees    
 
    Behavior Trees can be translated into the input languages of various model checkers to allow them 
to be verified. At present, automatic translators exist for translating Behavior Trees into the input 
languages of two model checkers (Wen, et al., 2007): the Symbolic Analysis Laboratory (SAL) and 
UPPAAL model checkers. The SAL suite (de Moura, et al., 2004) is a set of model checking tools, 
including a symbolic model checker for LTL and a bounded model checker. In previous work, the 
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symbolic model checker was used for verifying properties on Behavior Tree models (Grunske, et al., 
2011). The UPPAAL model checker (Larsen, et al., 1997) allows timed behaviour to be verified.    
    The process of translating Behavior Trees into the input languages of SAL and UPPAAL consists 
of two stages: the parsing stage and the translation stage. The parsing stage identifies a sequence of 
syntax rules which can be used to construct the given Behavior Tree, in the process determining 
whether or not the Behavior Tree is well-formed. If there are no syntax errors, the translation stage 
begins. The SAL or UPPAAL code is produced by executing translation rules that correspond to the 
sequence of syntax rules. This systematic approach allows the translators to be easily extended or 
modified, simply by changing the necessary translation rules. In the final code, the Behavior Tree is 
represented as a form of transition system, in which each node or block of atomic nodes corresponds 
to a transition. The code makes use of program counters, which are integer variables designed to keep 
track of the current location in the Behavior Tree. If there is a block of atomic state realisations at the 
top of the tree, these are translated as the initialisation section of the code; otherwise the root node 
becomes the initialisation. Alternatively, the initialisation can be provided by the user as a separate 
text file. For further details of the translation process, refer to Grunske et al. (2008).  
    



  
 

 
 
 
    Creating a slice of a Behavior Tree model follows the same process as for program slicing. The 
Behavior Tree is first converted into a control flow graph that shows the control flow of the model. 
Using the information in the control flow graph, the dependencies between the nodes are identified 
and represented in a dependence graph. This dependence graph can then be used to identify the rele-
vant nodes with respect to a given slicing criterion, extracted from the temporal logic theorem. The 
relevant nodes form a slice set. The slice set is then merged back into a syntactically correct Behavior 
Tree, which is the slice. Figure 18 depicts the overall process of Behavior Tree slicing. Sections 3.1 
and 3.2 define control flow graphs for Behavior Trees and the underlying transition system, respec-
tively. Section 3.3 defines the various dependency types. Section 3.4 describes the process of merging 
the slice set into a tree and the slicing algorithm is given in Section 3.5. A proof of correctness is 
given in Section 3.6, which guarantees that the slice will preserve the validity of the property of inter-
est, so it can be used in place of the larger original Behavior Tree for model-checking. 
 

 
Figure Figure Figure Figure 18181818. Overview of the Behavior Tree S. Overview of the Behavior Tree S. Overview of the Behavior Tree S. Overview of the Behavior Tree Slicing licing licing licing PPPProrororoccccess.ess.ess.ess.    

 
 Type of Slicing 
 
    Model checking verifies all possible paths of the system. Dynamic slicing assumes that only one 
path is of interest, so static slicing is the most suitable. A backwards slicing approach is required, 
since the objective is to find all the nodes that influence the criterion. This is in accordance with other 
approaches for using slicing for model checking purposes, such as Hatcliff et al. (2000) and Brückner 
(2007). 
    The final slice will be used in place of the original model for verification. Therefore, it must be 
executable, i.e. it should have a valid Behavior Tree structure. There should not be any disconnected 
nodes in the slice and it should conform to the rules of Behavior Tree structures, for example that all 
reversions should point to an ancestor. Since the backwards traversal of the dependence graph might 
not produce an executable Behavior Tree, an extra post-processing step is needed to make the neces-
sary modifications to the slice. 
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3.1 Creating aCreating aCreating aCreating a    BTBTBTBT    Control Flow GraphControl Flow GraphControl Flow GraphControl Flow Graph    
 
    The first step in slicing Behavior Trees is to create a BT control flow graph. Behavior Trees model 
the control flow of systems, but they cannot be used as a control flow graph directly, due to the infor-
mation which is implicit in the tree. Specifically, for selections, guards, synchronisations and input 
event nodes, the path where the condition is unsatisfied is not explicitly represented in the Behavior 
Tree. In a BT control flow graph, all such paths would be represented as a false branch from the node. 
For selections, when the condition is unsatisfied, the thread terminates, so an end node must be intro-
duced and the false branch must link to it. For guards, synchronisations and input event nodes, the 
control flow waits until the condition becomes satisfied, so the false branch must revert back to the 
node itself.  
    Due to these differences, instead of using a Behavior Tree directly as a control flow graph, it must 
be transformed into a new structure, known as a BT control flow graph. A BT control flow graph is a 
directed graph G = <N,E, start, end>, where N is a set of nodes, each representing a node in the Be-
havior Tree, E is a set of edges representing the flow of control, such that E = N  x N, start is the start 
node and end is a set containing the end nodes. Since Behavior Trees may have multiple exit points or 
may model non-terminating behaviour, the use of a unique end node is impractical. As Ranganath et 
al. (2007) pointed out, a single end node is not always possible, particular for systems with infinite 
loops.  
    Similar terminology as for the CFG’s of programs is assumed. Specifically, an edge e ∈ E, where e 
= (m1, m2), indicates that m2 is one of the nodes which can execute immediately after m1. The node m2 
is known as an immediate successor of m1. The edge from m1 to m2 is denoted by edge(m1, m2). A 
trace**  in a BT control flow graph consists of a sequence of nodes < m0, m1, ..., mk >, where for every 
mi, such that 0 ≤ i < k, (mi, mi+1) ∈ E. The function trace(mi, mj) is used to denote a trace from node mi 
to mj. A maximal trace from node m is a trace that starts at node m and either ends at a leaf node or 
contains an infinite loop. The set of maximal traces from a node m is given by the function max-
Traces(m). For every node m in the control flow graph, there exists a trace from root to m. Every edge 
in the control flow graph additionally has a label associated with it, to describe whether the edge 
corresponds to the true or false choice of a node. The function label(e) returns the label associated 
with the edge e.  
    Each node in a Behavior Tree is represented by a node in the corresponding control flow graph. 
Control flow graphs additionally have end nodes which do not correspond to Behavior Tree nodes. 
Apart from end nodes, the nodes in control flow graphs retain all the information of the corresponding 
Behavior Tree nodes, such as their component names and types. In the rest of this thesis, the term 
node will be used to refer to control flow graph nodes unless otherwise specified.  
 
    The following steps are used to construct a control flow graph from a Behavior Tree:  
 
1) Create a node in the control flow graph to represent the root node of the Behavior Tree. 
 
2) For each node n in the Behavior Tree which has a corresponding node m in the control flow 

graph, locate each of the children of n in the Behavior Tree. For each child, place a node  c into 
the control flow graph, with an edge from m to c. In this manner, a control flow graph node will 
be created for every Behavior Tree node, with edges representing the arrows in the Behavior Tree. 

 
3) For a single sequential node n in the Behavior Tree, locate its corresponding node in the con-

trol flow graph m. Then, label all of the outgoing edges of m as true. Insert an additional out-
going edge from m to a new end node. Label this edge false. This represents the semantics of 
selection nodes. If the condition of the selection is satisfied, the control flow may proceed to 

                                                      
**  The term trace is used instead of path as in program CFG’s to correspond with the trace of the underlying transition 

system, as described in the next section. 
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all subsequent nodes; otherwise the control flow for this thread terminates. See Figure 19 as 
an example. 
    Note that for a group of selection nodes connected by an alternative branching point, the same 
method is used for handling them but the condition represented by the false branches are differ-
ent. For sequential selection nodes, the false branch represents the case where the selection’s con-
dition does not hold. However, for a group of alternative branching selection nodes, the false 
branches of each node represent the case where all of the selection nodes’ conditions do not hold. 
For example, if the nodes were A?a? and B?b?, then the false branches of each node would repre-
sent NOT(A=a) AND NOT(B=b). 

    
Figure Figure Figure Figure 19191919. Representing . Representing . Representing . Representing a Selection Nodea Selection Nodea Selection Nodea Selection Node    

    
 

4) For each guard, synchronisation node or input event node (both external and internal event 
types) in the Behavior Tree, locate its corresponding node in the control flow graph m. Label all 
of the outgoing edges of m as true. Insert an additional outgoing edge from m back to itself, la-
belled false. This represents the “wait-until” semantics of guards, synchronisation nodes and in-
put events. See the following diagram as an example. If a synchronisation node is also a condi-
tional node, it will have two false edges in the control flow graph: one representing the false 
case of the condition and one for when the synchronising partners have not yet been reached. 
The following diagram illustrates this. 

          
Figure Figure Figure Figure 20202020. Representing . Representing . Representing . Representing a Guard Nodea Guard Nodea Guard Nodea Guard Node    

 
 
     The following table summarises how each type of Behavior Tree node is represented in the BT 
control flow graph. 
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Behavior Tree node type Representation in the BT control flow graph 

State realisation or output event. Represented by a single node; see Step 2 above. 

Selection Represented by a node with true & false outgoing edges, where 
false leads to an END node; see Step 3 above. 

Guard, input event or synchroni-
sation 

Represented by a node with true & false outgoing edges, where 
false loops back to the node; see Step 4 above. 

 

Table 1. Representation of Nodes in the BT Control Flow Graph 
 
 
 

    There are some significant differences between a BT control flow graph and the CFG’s normally 
used for programs. These differences are unavoidable due to the differences in semantics between 
Behavior Trees and programs. Specifically: 

� The nodes in a BT control flow graph may have more than two successors. This is due to the 
presence of concurrent and alternative branching. 

� A BT control flow graph does not have a unique end node. Furthermore, each end node de-
notes the termination of a thread, not the entire system. 

� Edges in a BT control flow graph retain information about their type, such as whether the 
edge is atomic or sequential. 

� Reversion and reference nodes alter the control flow, although in a CFG only the edges de-
note flow of control. 
 

     
3.1.1 Concurrent BranchingConcurrent BranchingConcurrent BranchingConcurrent Branching                    
     
    The threads of a BT control flow graph are taken to each start at the root node and continue until a 
leaf node is reached. See Figure 21 for an example of this. Note that due to alternative branching and 
conditional nodes, there may be more than one leaf node per thread. Each thread is given a unique 
identifier.  Each node may belong to more than one thread. The identifiers of the threads which a node 
m belongs to are given by the function threads(m).  
    The concurrency models used by Krinke (1998) and Nanda and Ramesh (2000) are unsuitable for 
Behavior Trees. In Nanda and Ramesh (2000), they explore the use of two different concurrency 
models, one which they describe as having a complete interleaving semantics and one which depicts 
the concurrency semantics in Java. Concurrency in Behavior Trees also follows a complete interleav-
ing semantics, as each thread operates fully in parallel with the others, unless synchronisation nodes 
are explicitly used. Despite this, the model that Nanda and Ramesh claim has a complete interleaving 
semantics is still not adequate for describing the threads in Behavior Trees. Their concurrency model 
has implicit synchronisation points at the ends of each thread. This arises due to the co-begin and co-
end statements in their model; the former representing the point at which two or more threads begin 
and the latter the point at which they end and merge back to the parent thread. The co-end statements 
act as a synchronisation point between the threads, so each of the threads must finish their behaviour 
completely before control reverts back to the parent thread. This is not the case for Behavior Trees. 
There is no equivalent co-end location, since the threads may finish at any time, regardless of what 
stage the other threads have reached. For this reason, when an end node in a BT control flow graph is 
reached, it signals the termination of that particular thread only, not the entire system. The other 
threads can continue to execute. This is different to the CFG’s of programs, in which the end node 
represents the termination of the whole program. 
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Figure Figure Figure Figure 21212121. Threads in Behavior Trees. Threads in Behavior Trees. Threads in Behavior Trees. Threads in Behavior Trees    

    

3.1.2     Alternative BranchingAlternative BranchingAlternative BranchingAlternative Branching    
 

    When programs contain an if...elseif...else construct, this can be modelled in a control flow graph 
using only two successors per conditional node, as shown in Figure 22.  
 

                 
 

Figure Figure Figure Figure 22222222. If. If. If. If----else Branching in Programselse Branching in Programselse Branching in Programselse Branching in Programs    

    
However, alternative branching cannot be modelled in this way. The difference is in the order of 
evaluation of the conditions. For an if construct, each condition is only evaluated if the previous one 
failed. In an alternative branching group, the order in which the conditions will be evaluated is not 
specified. For this reason, alternative branching can result in a node having multiple successors. 

 

3.2         BT Control Flow GraBT Control Flow GraBT Control Flow GraBT Control Flow Graphsphsphsphs    as Transition Systemsas Transition Systemsas Transition Systemsas Transition Systems    
 
    It is useful to interpret the execution of a BT control flow graph as a doubly-labelled transition 
system, in order to reason about the behaviour of the system in terms of the underlying states and 
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transitions. The interpretation of BT control flow graphs as transition systems as described here corre-
sponds with the existing translation into SAL (Grunske, et al., 2008).   
    Recall from Section 2.1.1 that a doubly-labelled transition system is a tuple T = (S, AP, I, L, →). 
In a BT control flow graph, the nodes represent the transitions between states rather than the states. 
The states of the system are not explicitly represented. Nonetheless, for every BT control flow graph 
G = <N,E, start, end>, a set of states S can be constructed, where each state represents the current 
evaluation of the system. Let V  represent the set of uniquely-labelled variables in G, where each 
variable v ∈V  belongs to one of the following subsets: Components, Attributes, Messages or Synch-
Labels. The ranges of these types are as follows: 

� If v ∈ Components, the range is {b | ∃ m ∈ N, where comp(m) = v and behav(m) = b}, 
� if v ∈ Attributes, the range is {b | ∃ m ∈ N, where attr(m) = v and attrExp(m) involves a be-

haviour b}, or 
� if v ∈ Messages or v ∈ SynchLabels, the range is {true, false}. 

    When BT control flow graphs are interpreted as doubly-labelled transition systems, each state is 
defined in terms of the atomic propositions which hold in that state, given by the labelling function L. 
The atomic propositions are given as the current evaluation of variables in V, denoted by pairs of 
variables and their values using the following notation: for each s ∈ S, if a variable v ∈ V  has the 
value val, then (v, val) ∈ L   (s). The set of atomic propositions which hold in a given state is dependent 
on the nodes which have executed so far. Note that each node or block of atomic nodes may be able to 
execute in many different states. That is, for each node n, there exists a set of pairs of states (s,s’) such 
that when the system is in state s, it is possible to execute n and result in state s’. This is due to concur-
rent branching. When a Behavior Tree is executing, several threads may be executing at once, each 
represented by a separate branch in the tree. If node n is about to execute, the only certainty is the 
current location of the thread which contains n; all other threads may have reached any location. 
Therefore, the overall system could be in one of several possible states. In a similar manner, the other 
various constructs of the Behavior Tree language, such as reference nodes and thread kills, could 
cause the system to be in any one of many different states when it is ready to execute a particular 
node.  
    If a node changes the value of a variable in the system, the state s before the node executes has a 
different labelling to the state s’ after the node has executed, i.e. L  (s) ≠ L (s’). Otherwise, the states 
have the same labelling, i.e. L (s) = L (s’). The nodes which can change the value of a variable are 
state realisations, internal output and internal input nodes. If a state realisation node executes, it modi-
fies a component or attribute. In the next state, that component or attribute has a new value but all 
other variables have the same value. Internal output nodes cause the message variable to change to 
true in the next state. Similarly, internal input nodes cause the message variable to change to false, to 
indicate that the message has been consumed. For all other nodes, such as selections, the purpose of 
the node is only to direct the control flow, not to change the state of the system. Therefore, the next 
state after the node has executed is identical to the previous state. This is described in Definition 10 
below, where ± is the function override operator. A function updates(n) returns a set of variable and 
value pairs, which are the variables modified by n and their new values. Note that it is a singleton set. 
 
DEFINITION 10. UPDATING STATES 
If a node n executes in a state s, leading to a new state s’, L (s) = L (s’) ± updates(n): 

� if  n is a state-realisation, where (comp(n) = C and behav(n) = b) or (attr(n) = C_A and at-
trExp(n) = “C_A := b” ), then updates(n) = {(C, b)} or updates(n) = {(C_A, b)}, respectively. 

� if  n is of type internalOutput, where m is the message being sent, updates(n) = {(m, true)},  
� if  n is of type internalInput, where m is the message being sent, updates(n) = {(m, false)} and 
� for all other types, updates(n) = { }, i.e. L (s) = L (s’). 

 ∎∎∎∎    
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    Following the conventions of model checking, the set I of initial states contains all possible states 
unless it is restricted. If the Behavior Tree begins with an atomic block of state realisations, I  is 
restricted to the states in which those components and attributes have the given values. Otherwise, the 
initial states are only restricted by the root node. The set I can be left unrestricted by using a blank 
node as the root of the tree. The function init(T) returns the initialisation nodes for the given transition 
system T, i.e. either the root node or the atomic block of state realisations at the top of the tree. 
    Selection nodes and other conditional nodes dictate the direction of control flow based on whether 
their guard holds in the current state. The guard of a conditional node is an expression involving a 
variable of the system. If the expression holds in the current state, the guard holds. In this case, one of 
the true branches in the control flow graph is taken next; otherwise the false branch is taken. Defini-
tion 11 gives details of the possible evaluations of a guard in a particular state, given by a function 
guard(n, s): (N x S) → Bool. The function returns true by default if the node has no guard. 
 
DEFINITION 11. GUARDS OF CONDITIONAL NODES 
For a node n, in a state s ∈ S, 

� if  n is of type BTguard or selection, where comp(n) = C and behav(n) = g, then guard(n, s) = 
true iff (C, g) ∈ L (s). 

� if  n is of type BTguard or selection, where attr(n) = C_A, then guard(n, s) = true iff (at-
trExp(n), true) ∈ L (s). 

� if n is of type internalInput or externalInput and m is the unique name of the message, then 
guard(n, s) = true iff (m, true) ∈ L (s). 

� for all other types, guard(n, s) = true. 

  ∎∎∎∎    

 
    Similarly, synchronisation nodes have an associated guard, known as the synchGuard, to indicate 
whether or not all of the synchronising partners have executed. The reason it is considered separately 
to other types of guards is that a node can be both a synchronisation node and a BTguard, selection or 
input message node. In such cases, in a particular state, the node’s guard may evaluate to a different 
value than its synchGuard. A function synchGuard(n, s): (N x S) → Bool is defined below, which 
returns true if all of a node’s synchronising partners have executed and false otherwise. If the node is 
not a synchronisation node, the function returns true. 
 
DEFINITION 12. SYNCHRONISATION NODES 
For a node n, in a state s ∈ S, 

� if  n is a synchronisation node, then synchGuard(n, s) = true iff all of n’s synchronising part-
ners have executed; false otherwise. 

� if n is not a synchronisation node, then synchGuard(n, s) = true. 

 ∎∎∎∎    

 
    As seen so far, the current state is dependent on the sequence of nodes that have executed. Obvious-
ly, not every sequence is allowable for a given BT control flow graph. From each state, only a small 
set of nodes are permitted to execute. These are the nodes that have been reached so far in each thread. 
In a given state s and a thread t, the nodes which are ready to execute next are given by a function 
readyt  (s): N → 2N. Definition 13 defines this. In general, when a node n executes, the nodes which 
can execute next are its immediate children. However, this differs if n has a guard or synchGuard 
which evaluates to false at s. For the synchronising case, n remains as the next node to execute, since 
it is still waiting for its synchronising partners to be reached. Recall that if a synchronisation node is 
also a conditional node, its condition must only be evaluated when all of its synchronising partners are 
ready to execute. Therefore, the node’s guard is only considered when its synchGuard evaluates to 
true.  
    In a given state, if a node’s synchGuard is true, but n has a guard that evaluates to false, the children 
reached via n’s false branch become the next to execute. In the case of selections, the next node to 
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execute will be an end node, whereas for BTguards and input events, it will be n itself. If the guard is 
true, i.e. n is free to execute, then its immediate children via the true edge are chosen next, unless n is 
a reversion or reference node. Additionally, if n is a thread kill node, the threads of its target node are 
terminated, so no more nodes will execute in those threads. The function readyt (s) returns an empty 
set for those threads.  
    If n is a reversion or reference node, the next nodes to execute are the immediate children of its 
target. This allows the control flow to jump to the new location. Recall that threads in BT control flow 
graphs start at the root and extend down to the leaf nodes. Therefore, the target node belongs to the 
threads of all of its descendents. After the reversion, all of these threads will be ready to execute the 
target node’s children. As an example, consider the BT control flow graph in Figure 23. Assume that 
thread 2 has just executed node 7. Assume thread 1 then executes the reversion to node 1. After the 
reversion, the next node to execute in both threads is node 2. 
 

                                 
Figure Figure Figure Figure 23232323. Execution of a Reversion. Execution of a Reversion. Execution of a Reversion. Execution of a Reversion 

         
    Atomic blocks are handled in a similar fashion. The only difference is that all nodes in the atomic 
block must execute before control passes to the children of the block. Therefore, if there are any syn-
chronisation or guard nodes whose guards evaluate to false at s, the entire block cannot execute. 
 

DEFINITION 13. CONSTRUCTION OF THE READY FUNCTION. 
The ready function is constructed as follows: 

For all states si ∈ I, for all threads t, readyt (si) = {root}. 

For all other states s’ ∈ S, let n be the node executed in state s to reach state s’, where s ∈ S. Then: 
(i) if synchGuard(n, s) = false, then readyt (s’) = readyt (s),   
 
(ii)  if (i) does not hold and guard(n, s’) = false, then  

readyt (s’) = { m | parent(m) = n and label(edge(n, m)) = false},  
 

(iii)  if (i) and (ii) do not hold and n is a thread kill node, then for all threads t such that  

t ∈ threads(target(n)), then readyt (s’) = {},  
  

(iv) if (i) and (ii) do not hold and n is a reversion or reference node, then for all threads t such 

that t ∈ threads(target(n)),  readyt (s’) = { m | parent(m) = target(n) and  
label(edge(target(n), m)) = true} and 
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(v) if (i), (ii) and (iv) do not hold, then for all threads t such that t ∈ threads(n),  
readyt (s’) = { m | parent(m) = n and label(edge(n, m)) = true}. 

 
If, instead of a single node n, a block of atomic nodes b = {n1, n2, ..., nk} were executed in state s to 
reach s’, where n1 is the top node of the block and nk is the last node, then each of the statements (i) to 
(iv) must be considered in that order. For each statement, if any ni ∈ b satisfies the condition of the 
statement, then that statement must be applied to ni. If no node in the atomic block satisfies any of the 
conditions in statements (i), (ii) and (iv), then statement (v) must be applied. However, statement (v) 
must be modified to: 

If (i), (ii) and (iv) do not hold, then for all threads t such that  t ∈ threads(ni),  
readyt (s’) = { m | parent(m) = nk and label(edge(nk, m)) = true}. 

 ∎∎∎∎ 
 
 
Example. 
    Consider the control flow graph shown in Figure 24. There are three threads, labelled 1, 2 and 3. 
Thread 1 consists of the nodes A[a], B[b] and G[g]. Thread 2 consists of A[a], C[c] and D???d???. 
Thread 3 consists of A[a], C[c], E[e] and the A[a] reversion. 

     At an initial state s0 ∈ I, the ready sets for all three threads contain only the root node, A[a].  
Initial state: ready1(s0) = {A[a]}, ready2(s0) = {A[a]}, ready3(s0) = {A[a]}. 
 
After A[a] executes, at state s1, there is a choice between executing B[b] and C[c] next. The ready set 
for thread 1 will contain B[b] and the ready sets for both other threads will contain C[c].  
 
After A[a] executes: ready1(s1) = {B[b]}, ready2(s1) = {C[c]}, ready3(s1) = {C[c]}. 
 
Assume that C[c] is chosen, reaching state s2. Then the ready set for thread 1 will remain unchanged, 
while the ready set for thread 2 will be updated to D??d??? and the ready set for thread 3 will be up-
dated to E[e].  
 
After C[c] executes: ready1(s2) = {B[b]}, ready2(s2) = {D???d???}, ready3(s2) = {E[e]}. 
 
Assume D???d??? is chosen next, reaching state s3, and assume that the condition does not hold. Then 
the ready set for thread 2 will be updated to contain D???d??? again, as it is a child of itself, and the 
other ready sets will remain unchanged.  
 
After D???d??? executes: ready1(s3) = {B[b]}, ready2(s3) = {D???d???}, ready3(s3) = {E[e]}. 
 
Next, assume the node E[e] is chosen, reaching state s4. The ready set for thread 3 will be updated to 
the reversion node.  
 
After E[e] executes: ready1(s4) = {B[b]}, ready2(s4) = {D???d???}, ready3(s4) = {A[a]^}. 
 
Then assume the reversion node A[a]^ executes, reaching state s5. The ready sets for all three threads 
are updated. The ready set for thread 1 is updated to contain B[b], because the thread was terminated 
and then re-started. The ready sets for threads 2 and 3 are both updated to contain C[c], as these two 
threads were both terminated and C[c] is ready to execute next. 
 
After A[a]^ executes: ready1(s5) = {B[b]}, ready2(s5) = {C[c]}, ready3(s5) = {C[c]}. 

 ∎∎∎∎ 
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Figure Figure Figure Figure 24242424. Example to illustrate re. Example to illustrate re. Example to illustrate re. Example to illustrate ready sets.ady sets.ady sets.ady sets.    

 
    Using these definitions, a BT control flow graph can be represented as a doubly-labelled transition 
system T = (S, AP, I, L, N,→), where S is a set of states,  AP is a set of atomic propositions, I is a 
set of initial states, L  is a labelling on states, N is a set of actions representing nodes and → : S  x 
N  x S are the transitions. As a short-hand, the notation s → s’ corresponds to (s, n, s’) ∈ →, 
which corresponds to the execution of the node n.  
    A run ρ = < s0, n1, s1, n2, s2 ...> in a doubly-labelled transition system T is a sequence of alternating 
states and nodes, starting and ending at states. A path π =  <s0, s1, ..., sk> is a sequence of states de-
rived from a run by removing all the nodes from the sequence. Similarly, an execution trace                
σ =  < n0, n1, ..., nk -1> is a sequence of nodes derived from a run by removing all the states from the 
sequence. The function run(π) takes a path as an argument and returns the corresponding run. The 
function runs(T) returns the set of all runs in the doubly-labelled transition system T, while       
paths(T) returns the set of all paths and traces(T) returns the set of all execution traces. The                        
function preTraces(s) returns the set of traces σ = < n0, n1, ..., nk -1> that correspond to a run                                     
ρ = < s0, n1, s1, n2, s2 ... nk, s>, i.e. the traces which cause the system to reach state s. The notation ρœsi] 

denotes the prefix of the run ρ ending at (and including) si, while ρ[si∑ returns the suffix of ρ starting 
at (and including) si. The same notation will be used for paths and execution traces. 
     
 

3.3 DependenciesDependenciesDependenciesDependencies    
 
    After the control flow graph has been constructed, the next step is to create a dependence graph 
from the control flow graph. A dependence graph is a directed graph G = <N, E>, where N is a set of 
nodes and E = N  x N is a set of edges. For an edge (ni, nj) ∈ E, the notation  ni ֌ nj  is also used, 
indicating a dependency from ni to nj. That is, node nj depends on ni. Unlike control flow graphs, 
edges in a dependence graph can link two nodes from different threads. The dependence graph is 
created by identifying the various dependencies between nodes. A path π in a dependence graph is a 
sequence of nodes such that for every pair of consecutive nodes in the sequence {ni, ni+1} ∈ π,            
ni ֌ ni+1, where d is a label identifying the type of dependency. The types of dependencies are 
control, data, interference, message, synchronisation and termination dependencies. The definitions 
for each type of dependency are given in Sections 3.3.1 to 3.3.6. These definitions utilise the notions 
of the Definition Set (DEF(n)) and Reference Set (REF(n)). Informally, DEF(n) contains all the com-
ponents and attributes that are defined or modified at node n and REF(n) contains all the components 
and attributes that are referenced at n. In the following definitions, assume that C is a component, s is a 
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behaviour name, n is a Behavior Tree node, a and b are attributes of C, S and T are sets and x is an 
element of S. 
 
DEFINITION 14.  DEFINITION SET  

Let DEF(n) represent the set of components and attributes defined at node n. Specifically, if the node 
is of the form:  

i) (state-realisation) C [s], then C ∈ DEF(n),  

ii)  (state realisation of attributes) C [a := s], then C_a ∈ DEF(n), 

iii)  (adding/ removing an element from a set) C [S := S + x] or C [S := S - x], then S ∈ DEF(n), 
iv) (union/ subtraction/ intersection of sets) C [S := S + T] or C [S := S - T] or C [S := S >< T],  

   then S ∈ DEF(n). 

 ∎∎∎∎ 
DEFINITION 15. REFERENCE SET 

Let REF(n) represent the set of components and attributes referenced at node n. Specifically, if the 
node is of the form: 

i) (selection/guard) C ?s? or C ???s???, then C ∈ REF(n), 
ii)  (selection/guard over attributes) C ?a = exp? or C ???a = exp???, where exp is an expression or 

a behavior, then C_a ∈ REF(n), 

iii)  (state realisation of attribute) C [a := f(b)], where f(b) is an expression over b, then b ∈ REF(n), 

iv) (selection over set predicates) C ?x : S? or C ?S = {}? or C ?S ⋈ m?, where ⋈ ∈ {=, >, <, ≤, 

≥}, then S ∈ REF(n). 

 ∎∎∎∎ 
      
3.3.1 Control DependenceControl DependenceControl DependenceControl Dependence    
  
    Control dependence occurs when one Behavior Tree node controls whether or not another node will 
be executed. The definition for control dependence is as follows. 
 
DEFINITION 16. CONTROL DEPENDENCE 

For two nodes p and q in a control flow graph, node q is control-dependent on node p, denoted as  

(p ֌ q), iff node p has at least two successors m and n, such that p ≠ m, where: 
• label(edge(p,n)) = false and 

• ∃ π ∈ maxTraces(m) such that q ∈ π and ∀r ∈ π, where r ≠ m and r ≠ q, for all edges e from 
r, label(e) = true. 

 ∎∎∎∎ 
 
    This definition captures the usual meaning of control dependence. A node q is control-dependent on 
a node p if there are two possible outcomes after executing p: in one scenario q is reached, and in the 
other scenario q is not reached. The definition requires that there are at least two successors, m and n. 
The requirement that m cannot be the same node as p ensures that no node can have a control depend-
ency to itself. The first criterion is that n must be reached via a false edge. Since false edges only 
reach end nodes or a loop, this implies that there is a trace from p on which q is never reached. Note 
that n may be p itself, as a false edge may loop back to p. The second criterion is that there is a maxi-
mal path from m on which q occurs and none of the other nodes on the path have a false edge. This 
ensures that none of those nodes can induce a control dependency to q as well. 
    The traditional definition of control dependence is unsuitable because BT control flow graphs do 
not necessarily have a single end node. The new control dependence definitions of Ranganath et al. 

cd 
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(2007) are designed for non-terminating systems. However, those definitions are also unsuitable for 
BT control flow graphs due to concurrent and alternative branching.†† Ranganath et al.’s non-
termination sensitive control dependence (see Section 2.2.2 on page 18), requires there to be a path 
from one of the successors of p on which q never occurs or p always precedes any occurrence of q. 
Using the same criterion for BT control flow graphs induces control dependencies from branching 
nodes to all of their descendents. To see this, let p be a node with more than one child due to branch-
ing and q be one of its descendents. Since there is more than one path from p, it will always be possi-
ble to find a path on which q never occurs, by following one of the other branches. Although the 
descendents are indeed controlled by the decision of which branch is taken, they are not actually 
dependent on the branching node p itself. Even if p was removed, the system would have the same 
behaviour, since the closest ancestor of p in the slice would become the new branching node. 
  
Example. 
Consider the BT control flow graph in Figure 25. Even though the execution of the node C[c] is de-
pendent on the choice made after the branching node B[b], the node B[b] itself is not the controlling  
 

 
                              Figure Figure Figure Figure 25252525. BT Control Flow Graph with Branching. BT Control Flow Graph with Branching. BT Control Flow Graph with Branching. BT Control Flow Graph with Branching    

 
element. If B[b] was removed and the branching node became A[a], the behaviour of C[c] will remain 
the same.  

            ∎∎∎∎ 
 
    Ranganath et al.’s definition (2007)  requires that for all paths from one of p’s successors, q always 
occurs or always precedes any occurrence of p. This requirement is too strong for BT control flow 
graphs. There may be a path to q which contains alternative or concurrent branches. Following these 
branches would lead to paths that do not reach q, even though p may still be controlling whether or 
not q executes. For this reason, the second requirement of Definition 16 only requires that there exists 
a path leading to q. 
 
Example. 
Consider the BT control flow graph in Figure 26. The node B?b? has two successors, C[c] and the end 
node. The end node satisfies the first criterion of control dependency, as it is reached via a false edge. 
From C[c], there is a path on which D[d] occurs and another on which it does not occur, i.e. the E[e] 
branch. Therefore, if the requirement was that all paths from C[c] must reach  D[d], the requirement 
would not be satisfied, so there would not be a control dependency from  D[d] to B?b?. Despite this, 
the selection node does indeed control whether or not D[d] can execute. This can be identified by 
requiring only that there exists a path from C[c] that reaches D[d]. Similarly, B?b? controls E[e]. 

 ∎∎∎∎ 

                                                      
†† The dependencies that arise from alternative branching are captured in termination dependence, given in Section 3.3.6. 
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Figure Figure Figure Figure 26262626. A Controlling Node with Branching Descendents. A Controlling Node with Branching Descendents. A Controlling Node with Branching Descendents. A Controlling Node with Branching Descendents    

 
 
Non-termination 
 
    The term maximal requires the trace to either end at a leaf node or contain an infinite loop. Most 
leaf nodes in Behavior Trees are either reversions or reference nodes, which cause the control flow to 
revert to another location. However, this change in control flow is not represented as an edge in the 
BT control flow graph. Therefore, the maximal paths will end at the leaf nodes. The implication of 
this is that a node m can never control an ancestor, n, even if the ancestor can be reached via a rever-
sion or reference node. In this case, m is not actually controlling whether or not its ancestor executes, 
but whether it executes for a second time. The first time n is reached, it will execute regardless of the 
controlling node m below. The node m is actually controlling the reversion or reference node, which 
in turn dictates whether or not n will be reached on a subsequent iteration. This does not result in any 
difference in the final slice. As will be seen in Section 3.4.3, if node n is in the slice, the reversion or 
reference node below will be included as well. Due to its control dependency to m, this will in turn 
result in the inclusion of m. 
    This can be thought of as similar to Nanda and Ramesh’s (2000, 2006) approach of differentiating 
between normal data dependence and loop-carried data dependence, which is data dependence arising 
from a previous iteration of a loop, although their approach does not address control dependencies 
induced by loops. One advantage of considering control dependence in this way is that it is computa-
tionally easier to explore paths up to the leaf nodes only, without following the paths created by rever-
sions or reference nodes. Another advantage will be seen in Chapter 4, for identifying paths which are 
infeasible.  
 
 
Example. 
Consider the Behavior Tree in Figure 27. The guard D???d??? controls the reversion but not its ances-
tors. If the guard is not satisfied, it would only prevent its ancestors from executing on future itera-
tions, not the first time.  

 ∎∎∎∎ 
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Figure Figure Figure Figure 27272727. Control Dependency to a Reversion.. Control Dependency to a Reversion.. Control Dependency to a Reversion.. Control Dependency to a Reversion.    

 
    The goal of non-termination sensitive control dependence (Ranganath, et al., 2007) is to identify 
nodes which control possibly infinite loops. In Behavior Trees, the loops created by reversion nodes 
are often not controlled by any conditional nodes. Thus, control dependency is not sufficient for iden-
tifying all the reversions and references which are necessary. Section 3.4.3 will present a method for 
identifying relevant reversions and reference nodes without requiring control dependence. 
 
Types of Controlling Nodes 
 
    Using Definition 16, the only nodes that can induce control dependencies are those with an out-
going false edge. These are either: selections, guards, synchronisations or input events, referred to 
collectively as conditional nodes. This produces a useful result: that every descendent of a conditional 
node is either directly or transitively control dependent on it. The reasons for this are simple: all nodes 
are control dependent on their nearest conditional ancestor, which will in turn be control dependent on 
their nearest conditional ancestor and so on. The following lemma demonstrates this. This result will 
be utilised for the proof of correctness for slicing, presented in Section 3.6 on page 84. 

   

LEMMA 1. ESTABLISHING CONTROL DEPENDENCE USING GUARDS 

For any node nx such that conditional(nx), ∀ny ∈ desc(nx), nx ֌ ny. 
 
Proof. 
(By induction over the number of conditional nodes between nx and ny). 
 
Base Case: nx is the closest ancestor of ny which is conditional,  

   i.e. ∀ni | ni ∈ desc(nx) ∧ ni ∈ ances(nx), NOT(conditional(ni)). .......(1) 
   
  conditional(nx) 

  ⇒  nx has two successors ni and nj, where label(edge(nx,nj)) = false   ........(2) 

  ny ∈ desc(nx),  

  ⇒ ∃ π ∈ maxTraces(nx) such that ny ∈ π. 
 From (1), ∀nk ∈ π, where nk ≠ nx, for all edges e from nk, label(e) = true.   ........(3) 
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 From (2) and (3), and by the definition of control dependence, nx ֌ ny. 
   
Induction Step: nx is not the closest ancestor of ny which is conditional. Let nz be the closest ancestor 

of ny that is a conditional node. Since nz ∈ desc(nx), assume that nx ֌ nz. 
 
  conditional(nz) 

  ⇒  nz has two successors ni and nj, where label(edge(nz,nj)) = false.  .........(4) 

  ny ∈ desc(nz),  

  ⇒ ∃ π ∈ maxTraces(nz) such that ny ∈ π. 
 Since nz is the closest ancestor of ny such that conditional(nz),  

 ∀nk ∈ π, where nk ≠ nx, for all edges e from nk, label(e) = true.   .........(5) 

 From (4) and (5), and by the definition of control dependence, nz ֌ ny. 

 Therefore, nx ֌ ny. 

  p 
 
3.3.2 Data DependenceData DependenceData DependenceData Dependence    
 
    Data dependence is defined in the same way as for programs. A node is data dependent on another 
if it refers to the state of a variable (component or attribute) that the other node defines or updates. For 
example, a selection node Button ?pushed? would be data-dependent on a state realisation node But-

ton [pushed] or even a node Button [released]. If there is a component or attribute c that is in the set 
REF(q), then the node q is data-dependent on any node p for which c is in the set DEF(p), as long as c 
is not re-defined by another node on the path between p and q. This dependence refers only to two 
nodes in a single thread. Data dependence between nodes in parallel threads is referred to as interfer-
ence dependency and is covered in the next section.  
 
DEFINITION 17. DATA DEPENDENCE. 

For two nodes p and q in a control flow graph, node q is data-dependent on node p, (p ֌ q), iff: 

• ∃ c ∈ DEF(p) such that c ∈ REF(q), 

• ∃ π = trace(p, q), where∀ k ∈ π, c ∉ DEF(k)  and 

• !(conc(p, q)).          ∎∎∎∎ 
 
 
3.3.3 Interference DependenceInterference DependenceInterference DependenceInterference Dependence    
 
    Interference dependence is the same as data dependence except that the two nodes involved are in 
parallel threads. For example, in Figure 24 on page 51, the node D???d??? is interference-dependent 
on the node D[d]. It is differentiated from data dependence because interference dependence is intran-
sitive, unlike the other dependency types. Due to this, if a slice is created simply by following transi-
tions in the dependency graph, the resulting slice may be imprecise, containing unnecessary nodes. 
This concept is covered in further detail in Chapter 4. The definition for interference dependence 
contains the same requirements as for data dependence, except that the nodes must be in parallel 
threads and therefore are not required to be connected by a path in the control flow graph. 
 
DEFINITION 18. INTERFERENCE DEPENDENCE. 

For two nodes p and q in a control flow graph, node q is interference-dependent on node p,  

(p ֌ q), iff:  

dd 

id 

cd 

cd+ 

cd 

cd+ 
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• ∃ c ∈ DEF(p) such that c ∈ REF(q) and  

• conc(p, q).          ∎∎∎∎ 
 

 
3.3.4 Message DependenceMessage DependenceMessage DependenceMessage Dependence    
    
    Message dependence is very similar to data dependence, except that it arises from internal input  
and output nodes. Each internal input node is message-dependent on all internal output nodes that 
send  the message it is waiting to receive. For example, an internal input node controller >lowAir< 
would be message-dependent on an internal output node sensor <lowAir>.  There may be multiple 
senders and multiple receivers. As with interference dependence, message dependence is intransitive 
because it can occur between parallel threads. External input and output message nodes do not induce 
message dependencies, since they represent interactions with the environment, not with other nodes in 
the control flow graph. 
 
DEFINITION 19. MESSAGE DEPENDENCE. 

For two nodes p and q in a control flow graph, node q is message-dependent on node p,  (p ֌ q) iff: 
• type(p) = intOutput and behav(p) = m and 

• type(q) = intInput and behav(q) = m.       ∎ 
 

    Message dependence is similar to Labbé et al.’s notion of communication dependence (2007) for 
communicating automata specifications, which describes communication occurring between two 
automata via channels. The interference control dependence of Luangsodsai and Fox (2010), used for 
slicing statecharts, also performs a similar purpose to message dependence. Interference control de-
pendence occurs when an event in a statechart is triggered by a parallel action. This can be seen as 
similar to an output message triggering an input message in a parallel thread. 
 
 
3.3.5 Synchronisation DependenceSynchronisation DependenceSynchronisation DependenceSynchronisation Dependence    
 

    Synchronisation dependence refers to the dependence between a group of synchronising nodes.  For 
example, if three nodes, all labelled A[a] but in different threads, are synchronising with each other, 
each will be synchronisation-dependent  on each of the others. Synchronisation dependence is thus 
symmetric. Note that since synchronising nodes have two successors in the control flow graph, a 
synchronising node induces a control dependence on its descendents. Additionally, the synchronising 
node is itself dependent on its synchronising partners. The result of this is that the descendents of a 
synchronisation node are transitively dependent on all of the synchronising partners. 
    Although synchronisation dependence occurs between parallel threads, it does not suffer from the 
intransitivity problem. Intransitivity of message and interference dependence occurs when a node  m  
is message or interference-dependent on a node n in another thread, which is in turn message or inter-
ference-dependent on a node p in the first thread, where p cannot execute before m. In such a case, m 
cannot be dependent on p and it is not necessary to include p in the slice. In contrast, if a node m is 
synchronisation-dependent on a node n in a second thread, n cannot be synchronisation-dependent on 
another node in the first thread, since there cannot be two synchronising partners from the same 
thread.   
 
DEFINITION 20. SYNCHRONISATION DEPENDENCE. 

For two nodes p and q in a control flow graph, node q is synchronisation-dependent on node p,   

(p ֌ q) iff: 
• flag(p) = synch and flag(q) = synch and 

• matching(p,q).          ∎

   

sd 

md 
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3.3.6         Termination DependenceTermination DependenceTermination DependenceTermination Dependence    
 
    All of the dependencies discussed so far are ones that enable the dependent node to execute. For 
instance, a node n2 is control-dependent on a node n1, then n2 needs n1 in order to execute. If a node n2 
is data-dependent on a node n1, then n1 may potentially create the conditions under which n2 can exe-
cute. However, there are some types of nodes that always prevent other nodes from executing. Thread 
kill nodes are the most obvious of these. A thread kill node terminates the thread that it is referring to. 
Thus, any node in that thread can suddenly be terminated during its operation.  
    When a reversion node executes, all threads that were started after the top reversion point are termi-
nated immediately (see Section 2.3). Every node in all of these sub-threads are therefore dependent on 
the reversion node. For example, in the Behavior Trees shown in Figure 24, node B[b] is termination-
dependent on the reversion node A[a], since B[b] belongs to a thread that will be terminated if the 
reversion executes. 
    The final dependency type in this category is produced as a result of alternate branching points. If 
one of the root nodes of the branches executes, all other branches are terminated. Thus, every node in 
each branch is dependent on the root nodes of the other branches. For example, in the Behavior Tree 
shown on the left of Figure 28, both nodes C[c] and P[p] are termination-dependent on D[d]. The node 
D[d] is termination-dependent on C[c].  
 
DEFINITION 21. TERMINATION DEPENDENCE. 

For two nodes p and q in a control flow graph, node q is termination dependent on node p,  

 (p ֌ q) iff:  

• (type(p) = threadKill) and q ∈ desc(target(p)) or 

• (type(p) = reversion) and q ∈ desc(target(p)) ∧ p ∉ desc(q) or 

• (alt(p,q)) and q ∈ desc(parent(p)). 

 ∎∎∎∎    

  
    In other words, a node q is thread-termination dependent on a node p if and only if p is either: 

i) a thread kill node which terminates q’s thread, or 
ii) a reversion node which terminates q’s thread, unless it is a descendent of q, or 
iii) a root node of a branch in an alternative branching set, where q belongs to another branch in 

the set. 
 

Example. 
    The following example illustrates the importance of termination dependence. Assume that the 

theorem to be verified is G(F(P = p ∧ C = c)). In other words, it is always the case that eventually the 
component P has a value p and the component C has a value c. Consider the Behavior Tree in Figure 
28. The Behavior Tree on the left is the original tree. If termination dependencies were not used for 
computing the slice, the node D[d] would be removed, producing the slice shown on the right. How-
ever, the two trees behave very differently. The theorem holds on the slice, while it does not hold on 
the original tree. In the slice, the node P[p] is always eventually reached, but in the original tree, if the 
D[d] branch is chosen, P[p] will never execute since its branch is terminated. This example illustrates 
the need for a dependency type that describes terminating behaviour. 
 
 

td 
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                   Original Behavior Tree Slice without termination dependence. 

 
                Figure Figure Figure Figure 28282828. Example of slicing without termination d. Example of slicing without termination d. Example of slicing without termination d. Example of slicing without termination deeeependencependencependencependence. 

 
 

3.4 Creating the SliceCreating the SliceCreating the SliceCreating the Slice    
     
    After the dependence graph has been created, the final step is to produce the slice based on a given 
slicing criterion. In traditional program slicing, the slicing criterion is a set of variables and a state-
ment of the program. The goal is to determine the values of the given variables at that point in the 
program. When slicing for verification, however, the goal is to determine the validity of a temporal 
logic property. This means that there may be more than one node to be used as the starting point for 
traversing the dependence graph. The slicing criterion is extracted from the temporal logic theorem 
which is to be verified. The criterion is a set consisting of every node which modifies the state of one 
of the variables mentioned in the theorem. For Behavior Trees, this amounts to every state realisation 
or set operation which updates a variable in the theorem. In the following, for a temporal logic theo-
rem φ, the theorem φ is said to contain a variable v if v is mentioned in the formula. The slicing crite-
rion is defined with respect to a given CTL*

-X formula φ, as given by the definition below. The nodes 
in the slicing criterion will be referred to henceforth as criterion nodes. 
 
DEFINITION 22. SLICING CRITERION FOR BEHAVIOR TREE SLICING 

For a transition system B = (S, AP, I, L, N,→) of a BT control flow graph, 
the slicing criterion Cφ with respect to a formula φ ∈ CTL*

-X, is defined as: 

Cφ = {n | ∃ v ∈ DEF(n), where φ contains v}. 

 ∎∎∎∎ 
 
    The slice is created in several stages. In the first phase, a simultaneous backward static slice is 
generated using the criterion nodes. The nodes in the criterion set form the starting points for the 
backwards traversals of the dependency graph. In other words, the set of nodes that the criterion nodes 
depend on, either directly or transitively, are located. Using each of the criterion nodes as the starting 
points, the dependency graph is traversed in reverse, collecting every node that is encountered via 
dependency edges. The algorithm checks whether a node has previously been encountered before 
adding it to the slice, in order to prevent infinite cycles caused by cyclic or symmetric dependencies. 
The set of nodes encountered by the traversals of the dependency graph is referred to as the slice set, 
given by Definition 23 below. 
 
DEFINITION 23. SLICE SET 

For a transition system B = (S, AP, I, L, N,→) of a BT control flow graph,  
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the slice set nodes_sliceφ(B) is defined as: 

nodes_sliceφ(B) = {nx | nx ֌ nc, for some nc ∈ Cφ}, where d ∈ {cd, dd, id, md, sd, td}. 

 ∎∎∎∎ 
 
    The second phase involves identifying which reversion and reference nodes to add back into the 
slice. These reversion and reference nodes are then used as the starting points for another reverse 
exploration of the dependence graph, in order to locate any further dependencies. 
    Finally, the nodes collected so far are re-formed into a syntactically correct Behavior Tree, forming 
the slice. This stage involves including additional place-holder nodes. 
    
3.4.1 Observable vs. Stuttering NodesObservable vs. Stuttering NodesObservable vs. Stuttering NodesObservable vs. Stuttering Nodes    
 
    The criterion nodes, i.e. the nodes which directly modify a variable in the temporal logic formula, 
are known as observable. All other nodes are referred to as stuttering nodes. The function obsφ(n) 
returns true if and only if the node n is observable. The stuttering nodes include the nodes which are 
reached during the backwards traversal, so while all observable nodes must be included in the slice, 
stuttering nodes may or may not be included in the slice. 
    For a doubly-labelled transition system T = (S, AP, I, L, N,→) representing a BT control flow 
graph, the labelling L  maps each state to the set of atomic propositions (AP) which hold in that state. 
A slice must exhibit the same behaviour as the original model in terms of only a subset of AP. This 
subset, denoted  APφ, consists of all the atomic propositions (v, val) such that v is a variable contained 
in the formula φ. To enable a control flow graph to be viewed in terms of this subset of atomic           
propositions only, the labelling on states can be restricted as well. The notation Lφ(s) is                            
used to denote the label of the state s restricted to the atomic propositions in APφ. That is, Lφ(s) =                                 
{( v, val) | (v, val) ∈ APφ}.  
    The notation s ⇢ s’ denotes the execution of a stuttering node in state s, leading to the state s’. 
The transitive closure of this is denoted as s ⇢* s’. If s ⇢ s’ in the context of φ, then Lφ(s) = 
Lφ(s’). The reverse holds as well: if Lφ(s) = Lφ(s’) and s’ was reached from s by a single step, then it 
must have been a stuttering step. The notation s ⇢j  s’ denotes that j stuttering steps are taken after  
s to reach state s’. 
    An execution trace in a transition system σ = < n0, n1, ..., nk > can be viewed in terms of observable 
nodes only, referred to as an observable execution trace, described in Definition 24 below. The ob-
servable execution trace is obtained using a notion of projection, similar to other approaches such as 
by Hatcliff et al. (2000). 
 
DEFINITION 24. OBSERVABLE EXECUTION TRACE 

An observable execution trace σφ, of an execution trace σ, is given by σφ = projφ(σ), where: 
� projφ(< >) = < >, 
� projφ(< n0, n1, ... , nk >) =  < n0 >

 ⌢ projφ(< n1, ... , nk >),  if n0 ∈ Cφ and 
� projφ(< n0, n1, ... , nk >) =  projφ(< n1, ... , nk >),    if n0 ∉ Cφ. 

 ∎∎∎∎ 
 
3.4.2     Blank NodesBlank NodesBlank NodesBlank Nodes    
 
    As will be seen in the following sections, sometimes a node may need to be included in the slice for 
the sole purpose of maintaining the correct tree structure, for example when a group of child nodes 
require a common parent. In these cases, the details of the node are unnecessary, so a blank place-
holder node may be used instead. These are nodes which have no data, i.e. they have no associated 
component or behaviour, and they do not cause any action to be executed. The advantage of using 
blank nodes instead of simply preserving the original node is that blank nodes have no dependencies. 
The original node may have a long chain of dependencies, all of which are unnecessary in the slice.    

d 
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    This situation only occurs for state realisations which are dependent on an attribute. If the original 
node was a conditional or synchronisation node, it would have induced a control dependency on its 
descendents and would therefore be in the slice already. If it had been an output message node (either 
external or internal), or a state realisation with no attributes, it would not have any dependencies other 
than a control dependency to an ancestor. Since the node’s descendents are in the slice, they would 
also have the same control dependency, so that ancestor would be in the slice as well. Therefore, the 
only type of node which can introduce additional dependencies is state realisations with attributes. 
Since the state realisation was not originally included in the slice, it is irrelevant to the slicing criteri-
on, and therefore the attribute’s value is also irrelevant. By replacing the state realisation with a blank 
node, the unnecessary dependencies will be ignored. Blank nodes are positioned in the tree at a specif-
ic location, given by the parent and children attributes in the function blank:  
 blank(parent, children),  
where parent is the node that will become the parent of the blank node, and children is the set of child 
nodes which will now have the blank node as their parent. Blank nodes have no corresponding up-
dates or guard. If a node n is a blank node then isBlank(n) returns true; false otherwise. 
 
3.4.3     Reversion and Reference NodesReversion and Reference NodesReversion and Reference NodesReversion and Reference Nodes    
     
    Most reversions and reference nodes would not be included using the slicing method described so 
far. Nonetheless, they are essential, as they are necessary for describing repeated behaviour and non-
terminating systems. In the following discussion, reversions and reference nodes will be collectively 
referred to as jump nodes, for ease of reading. 
    Leaving out a jump node could result in a slice that performs different behaviour to the original 
model. For instance, a component might change state and then change back to an earlier state after the 
control flow follows back a reversion. Leaving out the reversion in this case would incorrectly model 
the component only changing state once. For this reason, the jump nodes must be added to the slice as 
well. A jump node may introduce additional dependencies to the slice. Therefore an additional tra-
versal of the dependency graph starting at each jump node is necessary. 
 
Target Nodes 
 
    The next consideration is the target of a jump node. The target of a jump node might not already be 
in the slice, so when a jump node is added to the slice, its target may have to be added as well. Since 
the goal is to reduce the size of the slice as much as possible, the target should not be included into the 
slice unless it is absolutely necessary. An alternative is to assign a new target to the jump node. The 
location of the target node affects which nodes will be repeated after the reversion executes, i.e which 
nodes are involved in the loop from the reversion to the target. The new target must be as close as 
possible to the original target, in order to ensure that the same section of the tree will be repeated. 
Using the closest ancestor can lead to an incorrect slice. The ancestor was not originally involved in 
the loop, so its behaviour was never repeated. By choosing it to be the new target, it will now be re-
peated whenever the jump node executes. This situation is illustrated in Figure 29. The Behavior Tree 
on the left is the original model in which nodes B, C and the jump node are repeated in the loop. The 
picture on the right is the slice created by changing the target of the reversion to be node A, the closest 
ancestor of the original target. The slice now contains different execution traces than the original 
model. In the slice, the node A can be repeated infinitely often, whereas it could only execute once in 
the original model. Thus, the closest descendent must be used instead. This will produce a correct 
slice, since the descendent was originally involved in the loop.  
    Nevertheless, there is still a case that presents some difficulties. There may be more than one clos-
est descendent in the slice, as shown in Figure 30, where both B and D are the closest descendents to 
the target node A. In this case, using one of the descendents is not sufficient. In the original model 
both branches were required to re-start when the reversion executed, due to the semantics of rever-
sions. However, in the slice, only one branch repeats. In this situation, the original target node must be 
included into the slice.  
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                 Original Behavior Tree                                                    Slice  
           

(Dotted lines indicate regions which will be repeated due to the reversions). 
Figure Figure Figure Figure 29292929. . . . Change in Loop Caused by Using Closest AncestorChange in Loop Caused by Using Closest AncestorChange in Loop Caused by Using Closest AncestorChange in Loop Caused by Using Closest Ancestor 

 
    Definition 25 explains how the new target is calculated for a reversion or reference node in a slice. 
If the original target is in the slice, this is returned. Otherwise, if the original target is not in the slice 
and there is only one nearest descendent, the descendent is used as the new target. Finally, if the origi-
nal target is not in the slice and there is more than one nearest descendent, the original target is added 
back to the slice. Recall from Section 2.3.1 that a function with a sub-script denotes the Behavior Tree 
(or BT control flow graph) it operates on, so in the definition, targetB operates on the BT control flow 
graph B and targetS operates on the slice S. 

 
 
DEFINITION 25. TARGET OF A REVERSION/REFERENCE NODE. 

For a BT control flow graph B with a corresponding transition system T1 = (S1, AP1, I1, L1, N1,→1)  
and a slice S derived from B with a corresponding transition system T2 = (S2, AP2, I2, L2, N2→2), 
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the function targetS (nx) returns ny, where descSet = nearestDesc(targetB (nx)) and 
 

where ny = 













 

 
* In this case, the node targetB (nx) must be added to the slice as the parent of the nodes in near-
estDesc(targetB (nx)). 

 ∎∎∎∎ 
 
    Alternatively, in the last case a blank node could be inserted instead, but there is no advantage in 
doing this. Although a blank node would not bring any extra dependencies to the slice, the original 
target will not either. The jump node has the same component name, behavior name and type as its 
target, so it has the same data, interference and message dependencies as its target. Thus, these de-
pendencies would have already been added to the slice when the dependencies of the jump node were 
explored. If the target node has a control dependency, its descendents would also share the same 
dependency transitively. By a similar reasoning, if the target node has a synchronisation dependency, 
it is a conditional node, so the jump node would be transitively control dependent on it. Therefore, the 
synchronising nodes would already be in the slice. Similarly, if the target node has termination de-
pendencies, these would equally apply to its descendents, since they are in the same thread. Again, 
these dependencies would already be in the slice. In conclusion, there is no advantage in using a blank 
node instead of the original target node. Currently, the original target is preferable because at present 
there is no mechanism in Behavior Trees for nodes to revert to or reference a blank node. 
     
Reducing the Number of Jump Nodes 
   
    Including all the jump nodes into the slice is the simplest approach. This approach is correct but 
imprecise because not all of the loops are necessary. Reducing the number of loops could greatly 
reduce the time taken for model checking the slice.  
    After the slice has been created, a node may end up with multiple jump nodes as descendents with 
no intervening behaviour, such as shown in Figure 31. The Behavior Tree on the left is the original 
tree, with the grey coloured nodes indicating the nodes which are not in the slice set. Assume that the 
target of both reversion is the same. The Behavior Tree on the right is its slice, after all reversions 
have been added back in. The reversions have now become the immediate children of the second 
node, whereas earlier there were several other nodes which executed in between. In the slice, both 
branches now lead directly to identical reversions, so it does not matter which one is chosen. The key 
observation is that if two or more of a node’s children are jump nodes with the same target, both will 
result in identical execution traces. Due to this, only one of the jump nodes needs to remain in the 
slice. 
    The same principle can be extended to cases where even though the intervening behaviour is also in 
the slice, two or more jump nodes can be reached via the same sequence of nodes, thus producing the 
same execution traces. If two jump nodes cannot be reached via the same sequence of nodes, both 
must remain in the slice. The following example illustrates this. 
 
Example 
    Consider the slice Behavior Tree in Figure 32. When C[c] is reached, there are two possible jump 
nodes which may execute. Both reach the same target location. However, they do not result in identi-
cal execution traces. The reversion on the left is only executed after the node B[d] has executed. Thus, 
that reversion can produce traces where the component B changes between the state b and the state d 
alternately, while the reversion on the right cannot produce such traces. In this case, both reversions 
are necessary in order to ensure that all the traces of the original model are preserved in the slice.  

  ∎∎∎∎ 

targetB (nx),                                           if targetB (nx) ∈ N2,  or 

the element of descSet,                        if targetB (nx) ∉ N2 and | descSet | = 1, or 

targetB (nx) 
*                                         otherwise. 
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Figure Figure Figure Figure 32323232. Reversions Producing Different Execution Traces. Reversions Producing Different Execution Traces. Reversions Producing Different Execution Traces. Reversions Producing Different Execution Traces 

 
    In order to decide which jump nodes should remain in the slice, it is necessary to identify the ones 
which result in identical execution traces. Let n and m be two jump nodes. If both produce identical 
execution traces, they must satisfy the following requirements: 
 

(i) both n and m can only execute at the same steps in the same observable execution traces, i.e. 
for every observable execution trace σ such that σ ⌢ < n > is an execution trace, σ ⌢ < m > is 
also an execution trace and vice versa, 

 and 
(ii)  after n executes, for every execution trace after n, the observable remainder of the trace is 

identical to what would have occurred if m had executed instead and vice versa, i.e. if < n > ⌢ 
σ is an execution trace, where σ is an observable execution trace, then < m > ⌢ σ is also an 
execution trace and vice versa. 

 
The second requirement is satisfied if both jump nodes have the same target, since they both lead to 
the same subsequent behaviour. For the first requirement, it must be determined whether both jump 
nodes can only execute in the same traces. This occurs if both jump nodes can be reached by the same 
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sequence of nodes in the slice. Therefore, they must have the same closest ancestor in the slice. How-
ever, sharing the closest ancestor is not sufficient to guarantee the first requirement. One jump node 
may have additional control dependencies that the other does not have, thus restricting the traces in 
which it can execute.  
    Fortunately it is not necessary to consider all control dependencies from each jump node. What 
matters is only whether or not there is a chain of dependencies from the jump node to a node in the 
slice set. Suppose that two jump nodes n and m have no transitive dependencies to a node in the slice 
set. Then, the nodes that n and m depend on can execute at any time, regardless of the current states of 
nodes in the slice set. Therefore, it becomes a non-deterministic choice as to whether or not n and m 
will execute in a particular trace. Both nodes are effectively equivalent to each other, since both may 
or may not execute in every trace. The only exception is if one of the jump nodes can never execute, 
due to some dependency that is never satisfied. Such a situation can be identified by searching the 
dependency paths starting at the jump node, to identify any nodes needed by the jump node that can-
not execute before it. An alternate solution is to only remove a jump node n if there is another jump 
node m whose dependencies are a strict subset of n’s dependencies. This ensures that whenever m can 
execute, n can too, as n is more restricted.  
   Comparing the entire chains of dependencies originating at each jump node is too computationally 
expensive. A simpler solution is to compare the start of the dependency paths. If both paths start with 
the same node, the rest of the dependency paths will be identical. If one jump node has a dependency 
that restricts the traces in which it can execute, the associated dependency path must begin with either 
a control, data or interference dependency. According to the second requirement, both jump nodes 
have the same target node. In that case, both must have matching component names, behaviour names 
and types, so they are already known to share the same data and interference dependencies. Therefore, 
the only paths which need to be compared are those that begin with a control dependency. If both have 
matching control dependencies, they therefore have matching dependency paths.  
    In fact, it is not necessary for both nodes to have control dependencies to the same nodes; only to 
have control dependencies to matching nodes. Since both controlling nodes have the same component 
and behaviour names, both will lead to the same dependency paths. Figure 33 gives an example of 
two jump nodes that both have control dependencies to matching G?g? nodes. The only differences 
would be any further control dependencies from the controlling nodes themselves to an ancestor. 
However, in such a case, the jump node would be transitively control dependent on the ancestor as 
well. Therefore, to check whether two jump nodes have the same dependencies, it is sufficient to 
check that all of their transitive control dependencies match. 
 

 
Figure Figure Figure Figure 33333333. Example of two reversions with the same dependencies. Example of two reversions with the same dependencies. Example of two reversions with the same dependencies. Example of two reversions with the same dependencies 

A 

[ a ] 

           A          ^ 

[ a ] 

 

 B 

[ b ] 

           A          ^ 

[ a ] 

G 

? g ?  
D 

[ d ] 

C 

[ c ] 
G 

? g ?  



Creating the Slice  
 

53

    Further reductions can be made by observing that no nodes in the system can influence an external 
input node, so the component and message names of the external input node are irrelevant. Therefore, 
if one jump node has a control dependency to an external input node, it is enough for the other jump 
node to have a control dependency to any external input node, not necessarily a matching one. 
    This process of checking for matching dependencies is utilised for a function sameGuards, given in 
Definition 26. The function takes three nodes as arguments: nx, ny and nl. The node nl is the closest 
ancestor in the slice of the two jump nodes, nx and ny. First, the set of nodes which nx is transitively 
control dependent on are found, excluding nodes higher than nl. Out of these, if any of them are transi-
tively dependent on a node in the slice set, then ny is required to also have a control dependency to a 
matching node. Additionally, if nx is transitively control dependent on an external input node, ny must 
be too. The function sameGuards returns true if these conditions hold.  
 
DEFINITION 26. CHECKING FOR SAME GUARDS. 

Let Sφ be the slice set. Let  required(nx, nl) = {ni | ni  ֌ nx and ni ∈ desco(nl)}.  

Then, the function sameGuards(nx, ny, nl) returns true iff ∀ni ∈ required(nx, nl) such that ∃ nz ∈ Sφ 

where nz ֌m0 ֌ m1 ֌... ֌ mk  ֌ ni and ∀0 ≤ j ≤ k, mj ∉ required(nx, nl),  

∃ np ∈ required(ny, nl) such that either: 
� ni = np or 
� matching(ni, np) and 

∀ni ∈ required(nx, nl) such that type(ni) = external input, ∃ np ∈ required(ny, nl) such that type(nj) = 
external input. 

 ∎∎∎∎ 
 
    If two jump nodes have the same closest ancestor in the slice, the same target, are either both rever-
sions or both reference nodes and sameGuards returns true, then only one of them is necessary in the 
slice. This is given by Definition 27. The function equivφ(nx, ny) returns true if the two nodes are 
equivalent. The requirement that both must be reversions or both reference nodes is necessary due to 
the difference in semantics between the two types: a reversion will terminate all the sub-threads below 
the target, while a reference node will not.  
    In the definition, the closest ancestor is given by examining each leaf node of the slice (before any 
jump nodes have been inserted) and comparing all jump nodes that are descendents of the leaf node in 
the original model. The leaf node is the closest ancestor in the slice for each of those jump nodes. 
Using this method makes it easy to determine whether a particular jump node can produce traces 
which are different to other jump nodes. Note that in the following definition, canExec(n) denotes that 
the node n is able to execute in at least one trace, i.e. it is not the case that it can never execute. 
 
DEFINITION 27. EQUIVALENT JUMP NODES.  

For a transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and a transition 
system S = (S2, AP2, I2, L2, N2→2), where  S = sliceφ(B) for some formula φ,  
∀nl ∈ S such that leaf(nl),  
∀nx, ny ∈ descB (nl), such that flag(nx) = flag(ny) ∈ { rev, ref} and canExec(nx) and canExec(ny), 
 
if targets(nx) = targetS (ny) and sameGuards(nx, ny, nl), then equivφ(nx, ny). 
Otherwise if targetB (nx) ∈ descB (nl) and targetB (ny) ∈ descB (nl) and sameGuards(nx, ny, nl), 
then equivφ(nx, ny). ∎∎∎∎ 
 
Example 
Returning to the earlier example in Figure 32, the reversion on the left would not be compared with 
the reversion on the right, because their closest ancestors in the slice are different. The node B[d] is the 
last slice node before the reversion on the left, whereas C[c] is the last slice node before the other 

cd+ 

d d d d d 
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reversion. Thus, both reversions would be kept in the slice, since they can produce different traces of 
behaviour. 

 ∎∎∎∎ 
 
    A common result of slicing is for a node to have several jump nodes as descendents that each cause 
divergence (traces consisting entirely of stuttering steps). Since the purpose of slicing Behavior Trees 
is for verification, such divergent behaviour must be preserved in the slice. The jump nodes in such 
cases must therefore remain in the slice. Again, the same principle can be applied. Locate two or more 
jump nodes that result in identical observable execution traces. As well as being identical in terms of 
observable nodes, these traces must both have divergent behaviour occurring at the same steps in each 
trace. Divergence occurs when a loop operates entirely in a stuttering portion of the tree. Therefore, 
the target m of a jump node n must also be a descendent of n’s closest ancestor in the slice. This is 
given by the last statement in Definition 27. If the targets of both jump nodes are descendents of their 
closest ancestor in the slice, nl, and both have the same dependencies, then only one of the jump nodes 
is necessary.  
 
 
Example 
    Consider the Behavior Tree in Figure 34. There are four reversion nodes below the node labelled N, 
each numbered 1 to 4. The dotted arrows indicate where each reversion’s target is. The white coloured 
nodes are in the slice set. Reversions 1 to 3 all have the same closest ancestor in the slice, node N. On 
the other hand, the closest ancestor in the slice of Reversion 4 is node M, so it cannot be compared 
with Reversions 1 to 3. Reversion 4 should only be compared with any other reversions below node 
M. In this case, there is only one reversion, so Reversion 4 must remain in the slice. Out of the other 
three, all have targets that are descendents of N, so assuming that they have matching control depend-
encies, only one of them needs to be in the slice.   

 ∎∎∎∎ 
 

 
Figure Figure Figure Figure 34343434. Divergence Caused. Divergence Caused. Divergence Caused. Divergence Caused    By ReversionsBy ReversionsBy ReversionsBy Reversions 

 
    The following lemma demonstrates that if there is a reversion or reference node ny that is equivalent 
to another reversion or reference node nr, then ny is able to execute in all the same traces as nr and 
produce the same subsequent traces. This result confirms that reversion or reference nodes that are 
equivalent to another node are not required to be included into the slice.    
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LEMMA 2.  PRESENCE OF JUMP NODES 

For a doubly-labelled transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and 

a transition system S = (S2, AP2, I2, L2, N2→2), where  S = sliceφ(B) for some formula φ,  

∀nr ∈ N1 such that type(nr) = rev or ref, if ∃ ny ∈ N2 such that equivφ(nr, ny), then 

∀σ1 ∈ traces(B), such that σ1 = σ2 ⌢ <nx> ⌢ σ3, where σ2 ∈ traces(B) and σ3 ∈ traces(B), 

∃ σ4  ∈ traces(B) such that σ4 = σ5 ⌢ <ny> ⌢ σ6, where σ5 ∈ traces(B) and σ6 ∈ traces(B) and   

projφ(σ2) = projφ(σ5) and projφ(σ3) = projφ(σ6). 

 

Proof. 

Let Sφ be the slice set. By Definition 27, ∀nr ∈ N1 such that type(nr) = {rev, ref}, either nr ∈ N2 or 

 ∃ ny ∈ N2 such that: 

� the closest ancestor of nr in Sφ, na, is the same as the closest ancestor of ny in Sφ, 

� targetS (nr) = targetS (ny) or (targetB (nr) ∈ descB (na) and targetB (ny) ∈ descB (na)) and 

� sameGuards(nr, ny, na). 

 

Let σ1 ∈ traces(B), where σ1 = σ2 ⌢ <nr> ⌢ σ3.  

If targetS (nr) = targetS (ny) then ∃ σ6 ∈ traces(B), such that <ny> ⌢ σ6 ∈ traces(B) 

and projφ(σ3) = projφ(σ6). 

Otherwise, if targetB (nr) ∈ descB (na) and targetB (ny) ∈ descB (na), then 

σ3 consists only of stuttering steps. 

fi ∃ σ6 ∈ traces(B) such that <ny> ⌢ σ6 ∈ traces(B) 

targetB (ny) ∈ descB (na) 

fi σ6 consists only of stuttering steps. 

fi projφ(σ3) = projφ(σ6). 

 

Since na is the closest ancestor of both nr and ny such that na ∈ Sφ, the last observable node in σ2 is na. 

fi ∃ σ5 ∈ traces(B)  such that the last observable node in σ5 is na 

fi projφ(σ2) = projφ(σ5).  

sameGuards(nr, ny, na), 

fi both nr and ny have the same dependencies, 

fi σ5 ⌢ <ny> ∈ traces(B), since σ2 ⌢ <nr> ∈ traces(B), 

 p 
 
3.4.4 ReReReRe----forming the nodes into a treeforming the nodes into a treeforming the nodes into a treeforming the nodes into a tree    
 
    The final set of slice nodes is often a disjoint set of sub-trees, which must be re-formed into a syn-
tactically correct Behavior Tree. This situation results from deleting irrelevant nodes. Some program 
slicing algorithms instead replace irrelevant program statements with skip statements (statements that 
do not perform any action). This is a convenient method for maintaining the program structure. How-
ever, theses slicing approaches were designed for the purpose of debugging or understanding, not for 
verification. If the irrelevant Behavior Tree nodes were replaced with skip nodes, the final model used 
for model checking would still have the same number of program counter variables as the original. 
The skip nodes would have to be translated into transitions that do nothing except update the program 
counters. This would therefore cause unnecessary extra states to be examined by the model checker. 
Since the goal of slicing Behavior Trees is to reduce the model size as much as possible, it is more 
desirable to completely remove the irrelevant nodes from the tree. 
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    A node and its subtree becomes disjoint from the main tree if its parent node has been removed 
from the tree. In some cases, this can be easily resolved by joining the node to its nearest ancestor in 
the slice. However, this can become complicated if branching nodes are involved, especially if the 
root nodes of the branches have also been removed, or if a branch originally split off into further 
branches. For this reason, blank place-holder nodes are sometimes necessary. These can be thought of 
as skip nodes as above; however, instead of using them to replace all deleted nodes, they are only used 
in certain cases in order to maintain the original branching structure of the tree. 
    The algorithm for re-forming the slice set into a proper Behavior Tree operates on the structure of 
the tree only; none of the individual characteristics of the nodes, such as their type or name, are neces-
sary. The algorithm is thus best described using a function T(n) which returns the slice sub-tree rooted 
at a given node. T(root(B)) describes the slice sub-tree which begins with the root node of the original 
Behavior Tree B. Since the slice begins with the same root node, the sub-tree returned is the entire 
slice tree. The notation T(n) = (n, T1, T2, ..., Tm) describes the sub-tree with the root node n and for 

each sub-tree Ti, where 1 ≥ i ≥ m,  parent(root(Ti)) = n. The process for re-forming the slice set into a 
tree is given by Definition 28 below. 
 
DEFINITION 28. REFORMING TREE STRUCTURE. 

For a doubly-labelled transition system B = (S, AP, I, L, N,→) of a BT control flow graph  
and a slice set Sφ = nodes_sliceφ(B), 
 

T(n) = 













 

 where x is the number of children of n in B, and blank denotes a blank node. 

 ∎∎∎∎ 
 
    The process operates by following the structure of the original Behavior Tree in a depth-first man-
ner. Each node is either placed into the new tree, replaced by a blank node or not included into the 
new tree. In the latter case, its nearest descendent in the new tree becomes joined to its nearest ances-
tor. The details of this approach are as follows. If a node n is in the slice, the sub-tree rooted at n, T(n), 
consists of n joined to each of the sub-trees of its children from the original Behavior Tree. The sub-
trees of the children are in turn given by the function T, so n will not necessarily end up being joined 
to its original children. If n is not in the slice, T(n) depends on the number of children n has in the 
original Behavior Tree. If there is more than one child, n must be replaced with a blank node in the 
slice, in order to preserve the branching structure. In this case, T(n) consists of a blank node joined to 
the sub-trees of n’s children, again each given by the function T. If n has only one child, no node 
needs to be added to the slice at n’s location. T(n) is the same as the sub-tree of n’s child. Finally, if n 
has no children, T(n) is empty.      
    Using this process, the slice nodes will be all joined back into a tree, with blank nodes placed wher-
ever there are branches without a parent. However, after the tree has been formed, there may be un-
necessary blank nodes present. A blank node is created whenever a node is not in the slice but has 
several children in the slice. This is necessary in cases where the blank node’s parent has other sib-
lings. Suppose that the other siblings execute as an alternate choice, whereas the blank node’s children 
execute concurrently, as shown in Figure 35. In this case, an alternate choice must first be made be-
tween each of the other siblings and the blank node. Then, if the blank node is chosen, its children can 
then execute. If the blank node was not used, it would result in mixed alternative and concurrent 
branching on the same level. Thus, blank nodes are necessary in such cases. However, using the above 
algorithm, a blank node might be inserted even when its parent has no other siblings. In such cases, 
the blank node is unnecessary, as its children can simply be connected directly to the blank node’s 
parent. During the initial pass, it is not possible to identify the situation where a node originally had 
siblings, but does not have any in the slice. This will only be apparent after the tree has been fully 

(n, T(childB (n, 0)), T(childB (n, 1)), ... , T(childB (n, x)),          if n ∈ Sφ, 

(blank, T(childB (n, 0)), T(childB (n, 1)), ... , T(childB (n, x)),   if n ∉ Sφ and x > 1, 

( ),                                                                                           otherwise. 

T(childB (n, 0)),                                                                       if n ∉ Sφ and x = 1, 
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formed. Therefore, a second pass is necessary, in which such unnecessary blank nodes are removed. 
For each blank node, if it has no siblings, then it is removed and each of its children are joined to its 
parent. If a blank node has only one child or no children, the blank node is unnecessary, so is re-
moved. This is described in Definition 29. 

       
Figure Figure Figure Figure 35353535. Branching Involving a Blank Node. . Branching Involving a Blank Node. . Branching Involving a Blank Node. . Branching Involving a Blank Node.     

 
DEFINITION 29. REMOVING EXTRA BLANK NODES. 

For a transition system B = (S, AP, I, L, N,→) of a BT control flow graph  
and a slice S = T(root(B)), 
 

T2(n) = 












 

 where c = childNumS (parentS (nx)) and k = childNumS (n). 

 ∎∎∎∎    

 
    Finally, a third pass is needed to ensure that all the edges are of the correct type. Since some nodes 
which previously had several siblings might now have only one, their edge type must be changed to 
sequential instead of alternate or concurrent. Conversely, some sequential nodes might have moved up 
to become part of a group of siblings, so they must now be changed to concurrent or alternate, to 
match their siblings. This is described in Definition 30 below. For each node in the slice, if it is the 
only child of its parent, then its edge type is set to sequential. Otherwise, its edge type is set to match 
the edge type of the parent’s original children. Note that since all of the children must have matching 
edge types, it is sufficient to query only the edge type of one of the children. 
 
DEFINITION 30. CHANGING EDGE TYPES. 

For a transition system B = (S, AP, I, L, N,→) of a BT control flow graph  
and a slice S = T2(root(B)), 

∀nx ∈ S and np = parentS (nx), if childNumS (parentS (nx)) = 0, set edgeTypeS (np, nx) = seq; 

otherwise set edgeTypeS (np, nx) = edgeTypeB(np, childB (np, 0)). 

 ∎∎∎∎    

 
Example. 
      Figure 36 shows an example of a slice that has been re-formed into a tree. The Behavior Tree on 
the left is the original tree, with grey boxes representing the nodes that will not be in the slice. The 
Behavior Tree on the right is the final slice. Note that after the first phase, node A would have a blank 
node its only child and nodes B and C will be children of the blank node. In the second phase, the 
blank node is deemed unnecessary and removed. ∎∎∎∎ 

 

   

A 

B Blank  C 

   D E F 

(n, T2(childB (n, 0)), T2(childB (n, 1)), ... , T2(childB (n, x)),          otherwise. 

T2(childS (n, 0)),                                                                           if c = 1 or k < 2 
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Figure Figure Figure Figure 36363636. Re. Re. Re. Re----forming a slice into a Behavior Tree. forming a slice into a Behavior Tree. forming a slice into a Behavior Tree. forming a slice into a Behavior Tree.     

 
Example. 
    In Figure 37, two blank place-holder nodes are necessary because A has another child E. There is 

one thread in which E executes, one with D and one with the B and C alternate choice. ∎∎∎∎ 
 
 

 

 
 

Figure Figure Figure Figure 37373737. Re. Re. Re. Re----forming a slice into a Behavior Tree using two placeforming a slice into a Behavior Tree using two placeforming a slice into a Behavior Tree using two placeforming a slice into a Behavior Tree using two place----holder nodes.holder nodes.holder nodes.holder nodes.    
 
    The for-one and for-all constructs are used to model that some behaviour applies to one or all items 
in a set. The sub-tree below a for-all or for-one node usually contains at least one node referring to the 
items in the set, for instance to set all the items to a particular state. After slicing, however, all of these 
nodes may have been removed, leaving only nodes that do not refer to the items in the set (i.e. the 
parameter of the for-all / for-one expression). In previous work, (Yatapanage, et al., 2010), the for-all 
/ for-one nodes were removed in these cases. However, it would not always be correct to do so, since 
the user may have designed the model with the expectation that the descendents of the for-all / for-one 
node would be repeated. One possible solution is to automatically identify locations where the for-all / 
for-one node may be unnecessary and then to ask the user to decide whether or not the node should be 
retained in the slice. As a default, all for-all / for-one nodes are added to the slice. 
 
Example.  
    In Figure 38, for each entry ticket purchased, a global counter is updated. If the for-all / for-one 
node was to be removed, the counter would incorrectly increase only once. This type of situation is 
impossible to determine automatically, as it requires contextual knowledge of the system. 

 ∎∎∎∎ 

                                                   
Figure Figure Figure Figure 38383838. Example with a . Example with a . Example with a . Example with a forforforfor----allallallall    node.node.node.node.    
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    By following these steps, the slice set is transformed into a Behavior Tree. The transition system 
corresponding to the slice tree is given by the function nodes_slice, as given in the following defini-
tion.  
 
DEFINITION 31. SLICE. 

For a BT control flow graph G and its corresponding transition system B, the function sliceφ(B) re-
turns the transition system of the slice created from the slice set nodes_sliceφ(B), by using the con-
struction algorithms T1 and T2. ∎∎∎∎ 
 
   Each of the functions that operate on BT control flow graphs and their nodes, such as component(n), 
can be applied to the slice and its nodes as well. In order to make it easier to reason about a Behavior 
Tree and its corresponding slice, the thread identifiers for the slice are the same as for the original 
model. Therefore, if a thread t is in the slice, there will be a thread t in the original model as well, but 
not necessarily vice versa. 
 

3.5 Slicing AlgorithmSlicing AlgorithmSlicing AlgorithmSlicing Algorithm    
 
    The algorithm for computing a slice of a BT is computationally inexpensive. The creation of the 
dependence graph needs only to be performed once per BT and can be re-used for any temporal logic 
formula. The slicing algorithm normally used for programs is a two-phase algorithm designed for 
inter-procedural programs (Reps, et al., 1994). However, since Behavior Trees do not have procedure 
calls, a simpler one-phase slicing algorithm is sufficient. In the following, the modules for identifying 
the dependencies are described, followed by the calculation of the slice. 
    From the definition of control dependency, the only nodes that can create control dependencies are 
ones with two successors in the BT control flow graph. These are only guards, selections, synchroni-
sations, internal input events or external input events. The algorithm for searching for control depend-
encies is given below in pseudocode. The function takes two parameters: a node n and a node last-
Guard, which is the closest controlling ancestor. It recursively explores each node in the BT (lines 5-
6). A mapping, controlDepMap, is maintained from each node to the set of nodes it is control depend-
ent on. The controlDepMap variable is updated to store the control dependency from n to lastGuard 
(lines 1-2). In line 3, if the current node n is a selection, guard, synchronisation or input event, it in-
duces a control dependence on each of its descendents, upto the next controlling node. Therefore, line 
4 sets n to be lastGuard, which is given as the second parameter when the function is recursively 
called for the children. The time complexity for this method is O(n), where n is the number of nodes 
in the Behavior Tree, since it explores each node exactly once.  
 

 
    Data dependencies are calculated in two steps. First, all the guards, selections and state-realisations 
in the BT are identified in a single traversal of the tree. In the psuedocode below, guards is a mapping 
from behavior names to the set of guard and selection nodes with that behavior. SRs is a mapping 
from behavior names to the set of state-realisation nodes with that behavior. The time complexity for 
this step is O(n), where n is the number of nodes in the Behavior Tree, since it explores each node 
exactly once.   

 findControlD(Node n, Node lastGuard) 

1    if (lastGuard != null) then 

2        controlDepMap.store(n, lastGuard); 

    end if 

3     if (type(n) == (selection OR BTguard OR input OR synch) then 

4         lastGuard:=n; 

    end if 

5    for each child c of n do 

6        findControlD(c, lastGuard); 

    next c 
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    In the next step, each guard or selection node is identified as having a data dependency to each 
state-realisation node that has the same behaviour name. The variable dataDepMap is a mapping 
from guard and selection nodes to the set of state-realisations they are dependent on. For each  
pair (behaviour, nodeList) in the mapping SRs, the set of guard and selection nodes with the same 
behaviour name are located (lines 2-3). For each node n in the guard node list, it is first checked 
that n can be reached from each node m in nodeList (lines 4-7). For nodes in parallel threads, the 
check always returns true. For nodes in the same thread, the check returns true if there is a path 
from m to n in the BT control flow graph. This check can be performed in O(1) time, by utilising 
an ordering on node IDs that allows one to immediately determine whether a node is a descendent 
of another. The nodes that satisfy the check are added to a new list (lines 8-9). Finally, dataDep-
Map is updated to contain the dependency from n to the new list (line 10). For each guard (or se-
lection) node, every state realisation node in the corresponding list is explored once. Therefore, 
the worst-case time complexity is O(n2), where n is the number of nodes in the Behavior Tree. 
However, this case is impossible since each guard is only dependent on the state realisations with 
the same behaviour name. In most cases, there will only be a few state realisations and guards for 
each behaviour name, so the complexity will normally be less than O(n). 

 
 
    The algorithm for calculating message dependencies operates in the same way as for data depend-
encies. The message nodes are first identified. In the next stage, the input nodes are matched to the 
output nodes in the same way that the guards were matched to the state-realisations for the data de-
pendency function.  
    Synchronisation dependencies are very simple. Each synchronising node is dependent on each of 
the others. The algorithm simply records these dependencies by exploring each synchronising group 

 findDataD(Node n) 

1 identifyGuardsAndSRs(n); 

2 for each (behaviour, nodeList) ∈ SRs do 

3       guardNodes = guards.lookup(behaviour); 

4       for each n ∈ guardNodes do 

5            create new list nodeList2; 

6            for each m ∈ nodeList do 

7                  bool isReachable = checkIfReachable(m, n); 

8                  if  isReachable then 

9                          nodeList2.add(m); 

                 end if 

             next m 

10             dataDepMap.store(n, nodeList2); 

        next n 

 next  

 

 identifyGuardsAndSRs(Node n) 

1 create map guards, SRs; 

2     if (type(n) == state realisation) then 

3          currentSet = SRs.lookup(behav(n)); 

4          SRs.setAt(behav(n), currentSet ∪ {n}); 

5     else if (type(n) == guard or selection) then 

6          currentSet2 = guards.lookup(behav(n)); 

7          guards.store(behav(n), currentSet2 ∪ {n}); 

     end if 

8    for each child c of n do 

9        identifyGuardsAndSRs(c); 

    next c 
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once. Within each group, the nodes are accessed once for each of their synchronising partners. As for 
the previous case, the algorithm has a worst case of O(n2) time complexity, in the case where each 
node in the tree is a synchronisation node. However, for most Behavior Trees, there are only one or 
two synchronising groups, each involving only two or three nodes each, so the practical time com-
plexity would be far less. 
    The pseudocode below shows the function which calculates termination dependencies. It begins by 
creating a mapping terminatingRoots, from nodes to the node that can terminate them. The mapping 
will only contain the root nodes of branches that can be terminated. The algorithm traverses each node 
n of the tree. If n is a thread kill, its target is mapped to n in terminatingRoots (lines 3-4). Next, if n is 
a reversion, each child of the target that is not an ancestor of n is mapped to n in terminatingRoots 
(lines 5-8). Finally, if n is an alternative branching node, each of its siblings is mapped to it (lines 9-
12). When the entire tree has been traversed, each pair of nodes (t, r) in terminatingRoots is traversed 
(line 13). For each node t, each of its descendents are termination-dependent on r. This is recorded in 
another mapping termDepMap, which maps nodes to the nodes they are termination-dependent on 
(lines 14-19). This function also has a worst-case time complexity of O(n2), but again this represents 
an unrealistic case. In most cases, there are only a few nodes that cause termination dependencies in 
the tree. 

 

 findTermDep(Node n) 

1 create map terminatingRoots; 

2 for each node n do 

3      if (flag(n) == threadKill) then 

4          terminatingRoots.add(n.target, n); 

      end if 

5      if (flag(n) == reversion) then 

6          for each child c of n.target do 

7              if (! n in c.desc()) then 

8                  terminatingRoots.add(c, n); 

             end if 

          next c 

     end if 

9     if (edgeType(edge(n.parent, n)) == alt) then 

10          for each child c of n.parent do 

11             if (c != n) then   

12                 terminatingRoots.add(c, n); 

             end if 

          next c 

     end if 

 next n 

  

13 for each (t, r) in terminatingRoots do 

14       for each d ∈ t.desc() do 

15           list termNodes = termDepMap.lookup(d); 

16           if (termNodes == null) then 

17                create new list termNodes; 

          end if 

18          termNodes.add(r); 

19          termDepMap.store(d, termNodes); 

       next d 

 next 
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    After all of the dependencies have been calculated, the stored information can be re-used for all 
slices from the Behavior Tree. The previous functions need only be executed once per Behavior Tree. 
For each new criterion set, the function given below calculates the slice set. The function makes use of 
four sets of nodes, visited, tempSet, sliceSet, and currentSet. The first two are initialised to empty sets, 
while sliceSet and currentSet are both initialised to contain the nodes in the criterion (lines 1-2). The 
main loop of the algorithm operates until currentSet no longer contains any nodes (line 3). For each 
node n in currentSet, it is not explored unless it is not in the visited set. This prevents infinite cycles 
from occurring due to cyclic dependencies, such as the termination dependencies between alternative 
branching siblings. If n has not been previously explored, it is added to the visited set (lines 4-6), to 
prevent it from being explored again in the future. Next, the nodes which n is control-dependent on 
are located (line 7). Each of these are added to tempSet (lines 8-10). This is repeated for each of the 
types of dependencies. Finally, tempSet contains all the nodes that n is dependent on. These are all 
added to sliceSet (line 13). When all the nodes in currentSet have been explored, the set is emptied 
and replaced with the nodes in tempSet, which are the nodes that were discovered by exploring the 
dependencies (lines 14-15). The set tempSet is also emptied. The while loop then continues by explor-
ing each of the new nodes in currentSet. This continues until no more new dependencies can be 
reached. The complexity of this algorithm is O(n), since no node is explored more than once, due to 
the visited set. 
 

 
 
 
 
 
 
 
 

 calculateSlice( ) 

1 initialise visited, tempSet to empty; 

2 initialise sliceSet, currentSet to nodes in criterion; 

3 while (currentSet.size > 0) do 

4      for each n ∈ currentSet do 

5            if (! n ∈ visited) then 

6                visited.add(n); 

7                depNodes = controlDepMap.lookup(n); 

8                if (depNodes != null) then 

9                     for each m ∈ depNodes do 

10                          tempSet.add(m); 

                     next m 

                end if 

11                depNodes = dataDepMap.lookup(n); 

12                 ... (repeat 9 to 11 for each DepMap). 

13                sliceSet.addNodes(tempSet); 

           end if 

       next n 

14       currentSet = empty; 

15       currentSet.addNodes(tempSet); 

16       tempSet = empty; 

 loop 
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3.6                             Proof of CorrectnessProof of CorrectnessProof of CorrectnessProof of Correctness    
 
    The purpose of this slicing approach is to enable larger models to be verified than would normally 
be possible. An essential requirement is therefore that the slice preserves the same set of properties as 
the original model. In other words, a CTL*

-X property will be satisfied on the slice if and only if it is 
satisfied on the original model. The user must be reassured that this requirement will be fulfilled for 
any slice, regardless of the property or the original model. If this can be guaranteed, the slice can be 
used to replace the original model. For this reason, a proof of correctness of the approach is necessary. 
This section presents such a proof, based on the notion of bisimulation, which is a well-established 
technique for computing the equivalence of two structures. For further details on bisimulation, refer to 
Section 2.2.5 on page 25. Recall from Theorem 1 in Section 2.2.5 that if two transition systems are 
related by a branching bisimulation with explicit divergence, a CTL*-X property holds on one transi-
tion system if and only if it holds on the other. Since CTL-X and LTL-X are subsets of CTL*

-X, this also 
guarantees the preservation of CTL-X and LTL-X formulas. In this section, it will be demonstrated that 
a branching bisimulation with explicit divergence can be constructed between a Behavior Tree model 
and its slice. This will thereby show that a slice preserves the same CTL*

-X formulas as the original 
Behavior Tree. 
    In order to construct such a relation, it is necessary to show that every initial state in the original 
model can be matched by an initial state in the slice, as shown by Lemma 3 below. This is not a one-
to-one mapping, since several of the initial states in the original model may be matched to the same 
initial state in the slice. 
 
LEMMA 3.  EQUIVALENCE OF INITIAL STATES 

For a transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and a transition 

system S = (S2, AP2, I2, L2, N2→2), where S = sliceφ(B), ∀si ∈ I 1, ∃ ti ∈ I 2, such that Lφ(si) = 

Lφ(ti). 
 
Proof. 

∀n1 ∈ init(B) such that obsφ(n1), n1 ∈ Cφ, by Definition 22. 

fi n1 ∈ init(S), by Definition 23. 

fi ∀si ∈ I 1, ∃ ti ∈ I 2, such that Lφ(si) = Lφ(ti). 

 p 
  
   The following definition describes the construction of a relation, R, between the original model and 
a slice. The initial states are related by finding a matching initial state in the slice for each initial state 
in the original model. Subsequent states are then related as follows. Let s and t be two states in the 
relation such that a node n can execute in state s, leading to the state s’. If the node is in the slice and 
can be executed in state t as well, then both subsequent states are added to the relation. Note that in 
this case n may be either stuttering or observable. If n is not present in the slice, then s’ is said to relate 
to t.  
 
DEFINITION 32. RELATION R 

Let B = (S1, AP1, I1, L1, N1,→1)  be a transition system corresponding to a BT control flow graph  

and S = (S2, AP2, I2, L2, N2→2) be a transition system such that S = sliceφ(B) for some formula φ. 

A relation Rφ  = N1 x N2 can be constructed as follows: 
In the following, let s, s’, s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 

∀si ∈ I 1, find ti ∈ I 2, such that Lφ(si) = Lφ(ti). (A state ti must exist according to Lemma 3). 

Let each (si, ti) ∈ Rφ. 
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Then, Rφ can be constructed inductively as follows: ∀s ∈ S1 and t ∈ S2, if s Rφ  t, then: 

1) if ∃ s’ such that  s → s’ and n ∈ N2 and if ∃ t’ such that t → t’, let (s’, t’) ∈ Rφ and 

2) if ∃ s’ such that s → s’ and n ∉ N2, let (s’, t) ∈ Rφ. 

 ∎∎∎∎ 
     
    It now remains to be shown that the relation R is a branching bisimulation with explicit diver-
gence. In order to shown this, an auxiliary result is necessary: if a state is related to another by the 
relation R, then the states have identical labellings with respect to the variables in the criterion. This 
result arises from the definition of R, as shown by the following lemma. 
 
LEMMA 4.  RELATIONSHIP BETWEEN STATES AND R. 

For a transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and a transition 

system S = (S2, AP2, I2, L2, N2→2), where S = sliceφ(B),  s Rφ t  fi Lφ(s) = Lφ(t). 
 
Proof.  
(By induction). 

Base Case:  s ∈ I1 and t ∈ I2 and s Rφ t. 

 fi Lφ(s) = Lφ(t), by Definition 32. 
  
Induction Step:  

Assumption: For some s ∈ S1 and t ∈ S2, s Rφ  t fi Lφ(s) = Lφ(t). 

Required to show: ∀s, s’ ∈ S1 such that s → s’ and ∀t, t’ ∈ S2 such that t → t’, and s Rφ t, 

(1) s’Rφ  t’ fi Lφ(s’)  = Lφ(t’) and 

(2) s’Rφ t  fi Lφ(s’)  = Lφ(t). 
 
Case (1):  

s’Rφ  t’ 

 fi s → s’ and t → t’, for some node n, by Definition 32, point (1). 

  fi Lφ(s’)  = Lφ(s) ± updates(n) and 

Lφ(t’)  = Lφ(t) ± updates(n). 

Lφ(s) = Lφ(t), by assumption. 

fi Lφ(s’)  = Lφ(t’). 
 
Case (2):  

 s’ Rφ  t  

fi s → s’ and n ∉ N2, by Definition 32, point (2). 

fi ! obsφ(n), by Definition 23. 

  fi Lφ(s) = Lφ(s’). 

 Lφ(s) = Lφ(t), by assumption. 

 fi Lφ(s’)  = Lφ(t). 

 p 
 

n n 

n  n 

n 

n 
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    One of the requirements for branching bisimulation with explicit divergence is for each sys-
tem to be able to match any observable steps made by the other, possibly preceded by stuttering 
steps. It is therefore necessary to show that every observable step made in the original model 
can be matched by the slice. This is demonstrated by the following lemma, Lemma 5. Since the 
slice does not have any nodes that are not in the original model, the stuttering requirement is not 
necessary. The proof is shown by induction over the dependency paths starting at a node nx, 
which is the step made by the original system. The base case is where nx has no dependencies. 
The induction step assumes that  Lemma 5 holds for some node ny such that nx depends on ny, 
and thus proves that Lemma 5 holds for nx as well. Both cases are shown by contradiction. It is 
assumed that nx can execute in the original model but not in the slice. Figure 39 illustrates the 
various cases which arise from this. 
 

       

       
Figure Figure Figure Figure 39393939. Cases where . Cases where . Cases where . Cases where nx executes at executes at executes at executes at ssss    but not at but not at but not at but not at tttt. . . .     

 

Induction Step 

The control flow has not reached nx 
at t but it has at s. 
 
                      Case 1 

The control flow has reached nx at t 
but nx has a guard that evaluates to 
false at t and true at s. 
                       Case 2 

A conditional 
ancestor is una-
ble to execute 
before t but can 
before s.         
    Case 1a 

A reversion or 
reference node 
executed before 
s but not before 
t.      
     Case 1b 

There is a node 
ny that causes 
nx’s guard to be 
true, which 
executes before s 
but not before t. 
      Case 2a 

There is a node ny 
that causes nx’s 
guard to be false, 
which always 
executes before t 
but not before s.    
        Case 2b 

Base Case 

The control flow has not reached nx 
at t but it has at s. 
 
                      Case 1 

The control flow has reached nx at t 
but nx has a guard that evaluates to 
false at t and true at s. 
                       Case 2 

A conditional 
ancestor is unable 
to execute before t 
but can before s.       
        Case 1a 

A reversion or 
reference node 
executed before s 
but not before t.      
     Case 1b 
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LEMMA 5.  ORIGINAL STEP MATCHES SLICE STEP 

For a transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and a transition 

system S = (S2, AP2, I2, L2, N2→2), where S = sliceφ(B),   

∀s ∈ S1, t ∈ S2 such that s R t, if s → s’ and nx ∈ N2, then ∃ t’, t’’ ∈ S2 such that t → t’,  

s Rφ t’’ and s’Rφ t’. 
 
Proof. 
By induction. 
In the following, let s, s’, s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 
 

Base Case: There is no ny such that ny ֌nx. 

By contradiction, assume that s Rφ t and ∃ s’ | s → s’ and nx ∈ N2,  

but ∄ t’ | t → t’. 
 

Case (1): ∃ m ∈ threadsS(nx) such that nx ∈ readym(s) but nx ∉ readym(t). 

 Case (1a):   ∃ na ∈ ancess(nx) such that conditional(na) and 

∀σ1 ∈ preTraces(s), na ∈ σ1, but ∀σ2 ∈ preTraces(t), na ∉ σ2. 

s Rφ t ⇒ Lφ(s) = Lφ(t), by Lemma 4. 

⇒ ! obsφ(na). 

conditional(na) and na ∈ ancess(nx) 

⇒ na ֌ nx, by Lemma 1,  
which contradicts the base case assumption. 

 

 Case (1b):  ∃ nr ∈ N1 such that nr ∉ N2 and type(nr) ∈ { rev, ref} and target(nr) ∈ 
anceso(nx). 

⇒ ∃ ny ∈ N2 such that equivφ(nr, ny), by Lemma 2. 

⇒ ∀σ1 ∈ preTraces(t), nr ∈ σ1,  

⇒ nx ∈ readym(t), 
which contradicts the assumption of Case (1). 

 

Case (2):   ∃ g ∈ guards(nx) such that g ∉ Lφ(t) but g ∈ Lφ(s). 

⇒ guard(nx) ≠ {}, 

⇒ conditional(nx), 

⇒ ∃ ny such that ny ֌  nx, 
which contradicts the base case assumption. 

  

Induction Assumption: Requirement 1a holds for some node ny, where ny ֌ nx,  

where d ∈ {cd, dd, id, md, sd, td}. 
Induction Step: Required to show that Requirement 1a holds for nx. 

By contradiction, assume that s Rφ t and ∃ s’ | s → s’ and nx ∈ N2,  

but ∄ t’ | t → t’. 
 

 nx  nx 

nx 

nx 

nx 

nx 

cd+ 

d 

d 

nx 
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Case (1):   ∃ m ∈ threadsS(nx) such that nx ∈ readym(s) but nx ∉ readym(t). 
 

Case (1a):   ∃ na ∈ ancess(nx) such that conditional(na) and 

∀σ1 ∈ preTraces(s), na ∈ σ1,  but ∀σ2 ∈ preTraces(t), na ∉ σ2. 

s Rφ t ⇒ Lφ(s) = Lφ(t), by Lemma 4. 

⇒ ! obsφ(na). 

conditional(na) and na ∈ ances(nx) 

⇒ na ֌nx, by Lemma 1, 

⇒ na ∈ N2, by Definition 23. 

⇒ Lemma 5 holds for na, by the induction assumption. 

Therefore, since ∀σ1 ∈ preTraces(s), na ∈ σ1,   

⇒ ∀σ2 ∈ preTraces(t), na ∉ σ2,  
which contradicts the assumption of Case 1a. 
 

Case (1b):    ∃ nr ∈ N1 such that nr ∉ N2 and type(nr) ∈ { rev, ref} and target(nr) ∈ 
anceso(nx). 

⇒ ∃ ny ∈ N2 such that equivφ(nr, ny), by Lemma 2. 

⇒ ∀σ1 ∈ preTraces(t), nr ∈ σ1, 

⇒ nx ∈ readym(t), 
which contradicts the assumption of Case (1). 
 

Case (2):  ∃ g ∈ guards(nx) such that g ∉ Lφ(t) but g ∈ Lφ(s). 
Let g = (var, value1). 

Case (2a):  ∃ ny | ny ∈ N1, where (var, value1) ∈ updates(ny) and 

∀σ1 ∈ preTraces(s), ny ∈ σ1,  but ∀σ2 ∈ preTraces(t), ny ∉ σ2. 
 

If var ∈ components, then: 

var ∈ DEF(ny), by Definition 14. 

var ∈ REF(nx), by Definition 15. 

⇒ ny ֌ nx, by Definition 17 and Definition 18. 

⇒ ny ∈ N2, by Definition 23. 

⇒ Lemma 5 holds for ny, by the induction assumption. 

Therefore, since ∀σ1 ∈ preTraces(s), ny ∈ σ1,   

⇒ ∀σ2 ∈ preTraces(t), ny ∉ σ2,  
which contradicts the assumption of Case 2a. 

 

If var ∈ messages then: 
type(ny) = intOut and behavior(ny) = var. 

⇒ ny ֌ nx, by Definition 19. 

⇒ ny ∈ N2, by Definition 23. 

cd+ 

dd / id 

md 
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⇒ Lemma 5 holds for ny, by the induction assumption. 

Therefore, since ∀σ1 ∈ preTraces(s), ny ∈ σ1,   

⇒ ∀σ2 ∈ preTraces(t), ny ∉ σ2,  
which contradicts the assumption of Case 2a. 

 

If var ∈ synchLabels, then: 
flag(nx) = synch and flag(ny) = synch and matching(nx, ny) 

⇒ nx ֌ ny, by Definition 20. 

⇒ ny ∈ N2, by Definition 23. 

⇒ Lemma 5 holds for ny, by the induction assumption. 

Therefore, since ∀σ1 ∈ preTraces(s), ny ∈ σ1,   

⇒ ∀σ2 ∈ preTraces(t), ny ∉ σ2,  
which contradicts the assumption of Case 2a. 

 

Case (2b):  ∃ ny | ny ∈ N2, where (var, value2) ∈ updates(ny) for some value1 ≠ 

value2 and ∀σ2 ∈ preTraces(t), ny ∈ σ2,  but ∀σ1 ∈ preTraces(s), 

ny ∉ σ1. 

⇒ ∃ tj, tj’ such that tj → tj’ 

⇒ ∃ si such that si Rφ  tj but ∄ si’ such that si → si’ 

⇒ (si, tj’) ∉ Rφ, by Definition 32, 

⇒ (s, t) ∉ Rφ, by Definition 32, 
which contradicts the assumption. 

 p 
LEMMA 6.  SLICE STEP MATCHES ORIGINAL STEP 

For a transition system B = (S1, AP1, I1, L1, N1,→1) of a BT control flow graph and a transition 

system S = (S2, AP2, I2, L2, N2→2), where S = sliceφ(B),   

∀s ∈ S1, t ∈ S2 such that s Rφ t, if t → t’ and nx ∈ N2, then ∃ s’, s’’ ∈ S2 such that  

s ⇢* s’’ → s’, s’’ Rφ t and s’Rφ t’. 
 
Proof. 
By induction. 
In the following, let s, s’, s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 

 

Case (1):  ∃ na ∈ N1 such that na ∉ N2, where na ∈ anceso(nx) and conditional(na)  

⇒ na ֌ nx, by Definition 16,  

⇒ ny ∈ N2, by Definition 23, 
which contradicts the assumption. 

 

Case (2): ∃ na ∈ N1 such that na ∉ N2, 
 where type(na) = synch and type(nx) = synch and matching(na, nx).  

⇒ na ֌ nx, by Definition 16,  

sd 

ny 

ny 

 nx 

 nx 

 sd 

 
cd+ 
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⇒ ny ∈ N2, by Definition 23, 
which contradicts the assumption. 

 p 
 
THEOREM 2.  RELATIONSHIP BETWEEN SLICE AND ORIGINAL   

For a transition system B corresponding to a BT control flow graph, for all transition systems S such 

that sliceφ(B) = S for some formula φ, S is divergent-sensitive branching bisimilar to B,  

i.e. B ≜    S. 
 
Proof. 

Let B  =  (S1, AP1, I1, L1, N1,→1)  and S  =  (S2, AP2, I2, L2, N2→2) . In the following, let s, s’, 
s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 
 

Let Rφ  be a relation constructed according to Definition 32. It remains to be shown that R is a  

divergent-sensitive branching bisimulation. 

For Rφ  to be a divergent-sensitive branching bisimulation, Rφ  must satisfy all of the following  

properties. ∀s, t such that s Rφ t: 

(1a) if  s → s’, for some n ∈ N1, then either s ⇢ s’ and s’Rφ t or  

∃ t’, t’’ such that t ⇢* t’’ → t’,  s Rφ t’’ and s’Rφ t’. 
 

(1b) if  t → t’, for some n ∈ N2, then either t ⇢ t’ and s Rφ t’ or  

∃ s’, s’’ such that s ⇢* s’’ → s’,  s’’ Rφ t and s’Rφ t’. 
 

(2a) if there exists an infinite path fragment s ⇢ s0  ⇢ s1 ⇢..., 

there exists an infinite path fragment t ⇢t0  ⇢ t1  ⇢ ...., such that t0 Rφ  sk,  

for some k ≥ 0. 
 

(2b) if there exists an infinite path fragment t⇢ t0  ⇢ t1 ⇢..., 

there exists an infinite path fragment s ⇢s0  ⇢ s1  ⇢ ...., such that s0 Rφ  tk,  

for some k ≥ 0. 
 

Requirement 1a: if  s → s’, for some n ∈ N1, then either s ⇢ s’ and s’Rφ t or  

∃ t’, t’’ such that t ⇢* t’’ → t’, s Rφ t’’ and s’ Rφ t’. 
 

If nx ∈ N2,  

⇒ ∃ t’, t’’ ∈ S2 such that t → t’, s R t’’ and s’Rφ t’, by Lemma 5, 
as required. 
 

Otherwise, if nx ∉ N2, 

⇒ ! obsφ(nx) and s’ Rφ t, by Definition 32, 

nx 

nx 

nx 

 n 

 n 

 n 

 n 
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⇒ s ⇢ s’ and s’Rφ t 
as required. 
 

Requirement 1b: if  t → t’, then either t ⇢ t’ and s Rφ  t’   or  

∃ s’, s’’ such that s ⇢* s’’ → s’, t Rφ s’’ and s’Rφ t’. 

t → t’ 

⇒ nx ∈ N2 

⇒ ∃ s’, s’’ ∈ S1 such that s ⇢* s’’ → s’, s’’ Rφ t and s’Rφ t’, by Lemma 5, 
as required. 
 
Requirement 2a:  

∀s, t such that s Rφ t, if there exists an infinite path fragment s ⇢ s0  ⇢ s1 ⇢..., 

there exists an infinite path fragment t ⇢t0  ⇢ t1  ⇢ ...., such that t0 Rφ sk, for some k ≥ 0. 
 

Let ρ1  = < s, a0, s0, a1, s1 ... >, where ∀i ≥ 0, ! obsφ(ai) 

Let r = {nx | ∃ i ≥ 0 where nx = ai and type(nr) ∈ { rev, ref}} 

r ≠ { }, since the path is infinite. 

∀nx ∈ r, either nr ∈ N2 or ∃ ny ∈ N2 such that equivφ(nr, ny), by Lemma 2. 

⇒ ∀nx ∈ r, if ∃ sm, sm+1 ∈ ρ1 such that  sm  → sm+1,  

then ∃ tj, tj+1 ∈ N2 such that  tj → tj+1 or tj → tj+1 

⇒ ∃ ρ2  = < t, b0, t0, b1, t1 ... >, where ∀i ≥ 0, ! obsφ(bi) and for some k ≥ 0, b0 = ak 

⇒ t0 Rφ sk, for some k ≥ 0. 
 
 
Requirement 2b: 

∀s, t such that s Rφ t, if there exists an infinite path fragment t ⇢ t0  ⇢ t1 ⇢..., 

there exists an infinite path fragment s ⇢s0  ⇢ s1  ⇢ .... , such that s0 Rφ  tk, for some k ≥ 0. 
 
Proof by contradiction. Assume for every path from s, there is an observable node. 
Let ρ2  = < t, b0, t0, b1, t1 ... > 

 N2  ⊆ N1 

 ⇒∀i ≥ 0, bi  ∈ N1 

⇒∀ρ1 ∈ runs(s), such that ρ1 = < s, a0, s0, a1, s1 ... > where for some m ≥ 0, ∀i where 0 ≤ i < m, 

∃ x such that ai = bx,  

       sm → sm+1 and obsφ(n)  

⇒ n ∈ N2, by Definition 23,  

⇒ ∃ j ≥ 0 such that ρ2  = < t, b0, t0, b1, t1 ..., tj, n, tj+1 >, 
which is not an infinite stuttering path, 
which contradicts the assumption. 

     p 
    

nx 

 nx 

 ny 

nx 

nx 

nx 

 nx 

 n 
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    The proof confirms that the dependencies presented in this chapter have been defined correctly and 
that no additional nodes are necessary in order to preserve CTL*-X properties. 

 
    This chapter presented the concepts of slicing of Behavior Tree models. The definitions for the 
different dependency types were given, as well as algorithms for computing the dependencies and re-
forming the slice into a syntactically correct Behavior Tree. The slice was shown to preserve the same 
CTL* -X properties as the original, using divergence-sensitive branching bisimulation. The following 
chapter introduces a method for further reducing the size of the slice. 
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    As discussed in Section 2.2.3, interference dependence can lead to imprecise slices due to its intran-
sitivity. Krinke (1998) developed the notion of threaded witnesses to solve this problem. Whenever a 
node is reached via an interference edge, it is only added to the slice if it forms a valid threaded wit-
ness with the other nodes collected so far along that dependency path. However, the slices produced 
may still be imprecise, as will be shown in section 4.2. In Krinke’s method, when a node is to be 
added to the slice due to an interference dependency, it is first checked whether the node’s dependen-
cy path forms a threaded witness. If it does not, the node is not included in the slice. Although this is 
correct, it does not prevent other nodes whose only dependency is to the discarded node, from being 
added to the slice. Since those other nodes could not execute without the discarded node, they could 
be removed from the slice as well, producing a smaller slice. Section 4.2 presents a new procedure, 
which considers the entire dependency path instead of single nodes, thereby removing more unneces-
sary nodes from the slice. If a sequence of nodes does not form a threaded witness, then none of the 
nodes are included in the slice.  
 
 

4.1 Threaded Witnesses Threaded Witnesses Threaded Witnesses Threaded Witnesses for Behavior Treesfor Behavior Treesfor Behavior Treesfor Behavior Trees    
 
  
   Dependencies which cross thread boundaries, such as interference and message dependency, are 
intransitive. This can lead to imprecise slices because the normal slicing algorithm assumes that all 
dependencies are transitive. Although the resulting slice will be correct, it is imprecise, which means 
there may be unnecessary nodes. Since the slice is still correct, as shown by the proof in Section 3.6, 
the unnecessary nodes will not cause the slice to produce a different verification result than the origi-
nal. However, by removing these unnecessary nodes, the resulting slice may be smaller. Krinke 
(1998) proposed the notion of threaded witnesses to identify such nodes. In this section, the concept of 
threaded witnesses will be adapted for Behavior Trees.  
 
 
4.1.1 Threaded WitThreaded WitThreaded WitThreaded Witnessesnessesnessesnesses    
     
    The following definitions have been adapted for Behavior Trees from the original definitions given 
by Krinke (2003). As described in Section 2.2.3, Krinke and Nanda and Ramesh (2000, 2006) both 
defined versions of slicing suitable for inter-procedural concurrent programs. Since Behavior Trees do 
not have procedure calls, the following definitions have been adapted from Krinke’s approach for 
slicing intra-procedural concurrent programs, which uses threaded witnesses. The idea behind the 
threaded witness approach is to identify nodes which cannot execute before a criterion node and so 
cannot influence the criterion node. If a node nc is in the criterion and is transitively dependent on a 
node nx, the node nx is normally included into the slice. However, if nx is known to be unable to exe-
cute before nc, since there is no feasible path between the two, there is no need to include it. This 
situation occurs if either the nodes are in alternative branches or nx is a descendent of nc and there is 
no way of reaching nc via a reversion or reference node. 

44 IINNFFEEAASSIIBBLLEE  PPAATTHHSS  
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    The notion of threaded witness is defined in Definition 34. A threaded witness is a sequence of 
nodes in which for every node nx, for each of its predecessors ny in the sequence, either nx is reachable 
from ny or they execute in parallel. A node nx is reachable from another, ny, if it is possible to execute 
ny and then nx afterwards. The definition of reachable is given in Definition 33. It is not sufficient for 
there to merely be a trace from nx to ny in the control flow graph, since traces in control flow graphs 
terminate at reversions and reference nodes even though the control flow is simply diverted by these 
nodes. Therefore, the definition includes the possibility that ny can be reached from nx via one or more 
reversions or reference nodes. In the following, last(σ) returns the last node and first(σ) returns the 
first node of a sequence σ. 
 
DEFINITION 33. REACHABLE NODES 

For two nodes nx, ny in a BT control flow graph B, reachable(nx, ny) iff  

∃ σ ∈ traces(B) such that σ  = < m0, m1, ... , mk >, where m0 = nx  and mk = ny and for some j ≥ 0, σ can 

be divided into j sub-sequences σ1, σ2, ..., σj such that for every σi, where 1 ≤ i < j,  type(last(σi)) ∈ 

{ rev, ref} and first(σi+1) = targetB (last(σi)). 

 ∎∎∎∎ 
 
DEFINITION 34.  THREADED WITNESS 

Let G be a dependency graph derived from a BT control flow graph B. Let π ∈ paths(G) such that  π = 

< n0, n1, …, nk >. Then, π is a threaded witness, denoted tw(π) iff:  

(adapted from (Krinke, 1998)) 

∀0 < i ≤ k, ∀0 ≤ j < i, either: 

� thread(ni) ≠ thread(nj), or 

� reachable(nj, ni) in B. 

 ∎∎∎∎    

 
    The slice is constructed by collecting all the nodes encountered via a backwards search of the de-
pendency graph, starting at the criterion nodes, as before. However, this time, if a path in the depend-
ency graph to a node is not a threaded witness, the node is not added to the slice. This is described in 
Definition 35. Note that termination dependency must be ignored at this stage, as many termination 
dependencies do not result in threaded witnesses but are still legitimate dependencies. For example, 
the termination dependence between nodes in alternative branches would result in dependency paths 
that are not threaded witnesses since there is no feasible path between the nodes. For this reason, 
termination dependencies are collected at a later stage of the slicing process, after the phase where 
threaded witnesses are used to remove infeasible dependencies. 
     
DEFINITION 35. SLICING USING THREADED WITNESSES 

A slice set containing only nodes on threaded witnesses, nodes_TWφ(B), of a BT control flow graph B 

using a criterion Cφ and a dependency graph G, is defined as: 

nodes_TWφ ={ni | ∃ nc ∈ Cφ and ∃π ∈ paths(G) where π = < ni, ..., nc > and tw(π)}. 

 ∎∎∎∎ 
 
Example. 
    Consider the Behavior Tree in Figure 40. Assume the slicing criterion is {C}, so the node C[c] is a 
criterion node. It is control dependent on B?b?, which is in turn data dependent on B[b] in the parallel 
thread. This is in turn control dependent on D?d?, which is data dependent on D[d]. The chain of 
dependencies can be seen in Figure 41. The normal slicing algorithm would include all of these nodes 
in the slice. However, D[d] and C[c] are in alternative branches and there are no reversions, so there is 
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no path from D[d] to C[c]. The dependency chain does not form a threaded witness. Therefore, D[d] 
cannot influence C[c] and should be left out of the slice.  

 ∎∎∎∎ 
                                 

 
Figure Figure Figure Figure 40404040. Example Behavior Tree.. Example Behavior Tree.. Example Behavior Tree.. Example Behavior Tree.    

 
 

                       
 

Figure Figure Figure Figure 41414141. Dependenc. Dependenc. Dependenc. Dependenceeee    Graph for the Behavior Tree in Graph for the Behavior Tree in Graph for the Behavior Tree in Graph for the Behavior Tree in FigFigFigFigure ure ure ure 40404040....    
 
 
4.1.2 Nested ThreadsNested ThreadsNested ThreadsNested Threads        
     
    As explained previously in Section 2.2.3, Nanda and Ramesh (2000, 2006) proposed an improve-
ment to Krinke’s algorithm in order to handle nested threads more precisely. This problem does not 
arise for Behavior Tree slicing, because of the difference in how threads are defined. As demonstrated 
by the example in Figure 8 on page 21, in Nanda and Ramesh’s Control Flow Graphs, a thread is 
considered to start when the control flow branches into the new path and ends when the control flow 
converges back to the parent thread. On the other hand, threads in Behavior Trees are considered to 
start from the root and stretch all the way to a leaf node, as demonstrated by Figure 42, which shows 
the boundaries of two threads. By this definition, a node may belong to more than one thread. In the 
figure, the top three nodes are common to both threads. This definition prevents the nested threads 
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problem from occurring because both the parent and child threads are considered as one single thread. 
The style of Control Flow Graphs used by Nanda and Ramesh cannot be used for Behavior Trees 
since threads in Behavior Trees do not always have a distinct end point.  

 
Figure Figure Figure Figure 42424242. Threads in Behavior Trees. Threads in Behavior Trees. Threads in Behavior Trees. Threads in Behavior Trees    

 
    As explained in Section 2.2.3,  a second improvement was suggested by Nanda and Ramesh (2006), 
for creating more precise slices in the presence of nested loops. The problem arises when a node n is 
found to be transitively dependent on another node m even though the variable update performed at m 
will always be overridden by another node p, an ancestor of n. Again, this problem does not apply to 
Behavior Trees. Threads in Behavior Trees operate fully concurrently and the order in which the 
nodes in parallel threads interleave is not fixed. Therefore, this issue does not arise because the possi-
bility that node m may execute after node p cannot be ruled out. 
     

4.2 More Precise SlicesMore Precise SlicesMore Precise SlicesMore Precise Slices    
 
    The threaded witness approach described in the previous section can still lead to imprecise slices. In 
this section another approach is presented that extends the concept of threaded witnesses to remove 
further nodes from the slice. The main difference is that this approach considers the entire maximal 
path before deciding whether or not to include a node, instead of only the path up to the node. 
    Suppose that a criterion node is transitively dependent on another, n. Now, suppose that the path 
from the criterion node to n does not form a threaded witness. According to the previous approach, n 
will not be included in the slice. However, there may be other nodes on the dependency path which 
also cannot influence the criterion node, since they are solely dependent on n. If it is known that n 
cannot execute before the criterion node, these other nodes cannot execute either. The threaded wit-
ness approach cannot identify such nodes, because the path up to these nodes does form a threaded 
witness. 
    This situation occurs because each node is considered separately to determine if it should be includ-
ed in the slice. There is no way of identifying the case where the path up to a given node may form a 
valid threaded witness despite the fact that the rest of the path does not. In this section, a different 
approach is presented that considers entire dependency paths instead of single nodes at a time. 
 
Example. 
Consider again the Behavior Tree in Figure 40 and its corresponding dependency graph in  Figure 41. 
The node D[d] was left out of the slice since the path up to it does not form a threaded witness. The 
paths up to each of the other nodes form threaded witnesses, so these nodes were all added to the slice. 
However, all the other nodes on the path also cannot influence C[c], due to their dependency to D[d]. 

 ∎∎∎∎ 
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4.2.1 Infeasible PathsInfeasible PathsInfeasible PathsInfeasible Paths    
 
    The set of maximal paths in the dependency graph ending at a given node is given by the function 
depPaths, as described in Definition 36. In other words, depPaths(n) returns the set of paths starting at 
node n and either terminating at a node with no incoming edges (i.e. no dependencies) or containing a 
cycle. This is accomplished in the definition by stating that if the first node on the path, m0, is depend-
ent on another, mj, then the path must contain a cycle, i.e. mj must be on the path.The resulting set of 
paths contain all the nodes that the specified node is dependent on.  
 
DEFINITION 36. DEPENDENCY PATHS 

For a dependency graph G and a node n,  

depPaths(n) = {  π ∈ paths(G) | π  =  < m0, m1, ..., mk, n >, where if ∃ mj such that mj ֌ m0  

then mj ∈ π }.  

 ∎∎∎∎ 
 
The original definition of a slice can be reformulated using depPaths as given in Definition 37. Note 
that if a criterion node nc has no dependencies, depPaths(nc) would return a single path containing 
only nc. 
 
DEFINITION 37. SLICING BEHAVIOR TREES 

A slice set nodes_sliceφ(B) of a BT control flow graph B, with respect to a formula φ, with a criterion 

Cφ, is defined as: 

nodes_sliceφ(B) = {nx | ∃ nc ∈ Cφ where ∃ π ∈ depPaths(nc) and nx ∈ π}. 

 ∎∎∎∎ 
 

    A path is known as infeasible if it is a member of depPaths(nc) for some nc ∈ Cφ and does not form 
a threaded witness, as stated in Definition 38. A path is termed feasible iff it is not infeasible. If such a 
path is discovered, then none of the nodes on that path are added to the slice during that traversal of 
the graph. This does not, however, prevent nodes that are able to execute from being included in the 
slice. Recall that a node may belong to more than one path in the dependency graph. If a node on an 
infeasible path is still able to execute as it also belongs to a feasible path, then it will be included in the 
slice when the other path is explored on a future traversal of the graph.  
     
DEFINITION 38. INFEASIBLE PATHS 

For a node n ∈ Cφ, for a path π  ∈ depPaths(n), π  is known as infeasible with respect to n iff it is not a 
threaded witness. The function infPathn(π) returns true iff π is infeasible with respect to n.  

 ∎∎∎∎ 
Example. 
Returning to the example in Figure 40, depPaths(C[c]) would return the entire path shown in Figure 
41. Due to the conflict between D[d] and C[c], the path is not a threaded witness. Therefore, it is infea-
sible and none of the nodes will be added to the slice.   

 ∎∎∎∎ 
 
    If all the dependency paths from a criterion node, nc,  that contain a particular node, nx, are infeasi-
ble, then nx is designated as infeasible with respect to the criterion node as given in Definition 39. This 
means the node cannot influence the criterion node. The definition also labels nodes which have no 
dependency path to the criterion node as infeasible. This is appropriate, since such nodes will not have 
any influence over the criterion node.  
 

    d 
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DEFINITION 39. INFEASIBLE NODES 

For a node nx and a criterion node nc ∈ Cφ, the function inf(nx, nc) returns true iff ∀π ∈ depPaths(nc) 

such that nx ∈ π, infPath(π). 

 ∎∎∎∎    

 
    The definitions presented so far are useful for identifying nodes which are unable to influence the 
criterion node because all of the associated dependency paths are infeasible. As well as this, there are 
cases where a node cannot influence the criterion node even though it is on a feasible dependency 
path. These cases involve conditional nodes and synchronisation nodes. Assume there is a criterion 
node nc which is control dependent on a conditional node ng. If the conditional node is found to be 
infeasible, nc can never execute, regardless of whether or not it has other dependencies which lead to 
valid paths. A similar situation occurs for synchronisation nodes, because a node cannot execute until 
all of its synchronising nodes are ready to execute as well. The control and synchronisation dependen-
cy types are effectively stronger than other dependencies, since the dependent node requires the other 
in order to execute, whereas for other dependencies, the dependent node may still be able to execute 
without it. For example, a guard node may be able to execute even if the corresponding state realisa-
tion is infeasible, if there is another state realisation performing the same action. For this reason, 
control and synchronisation dependencies must be handled differently than the other dependency 
types. Otherwise, in the above situation, if the conditional node ng was not added to the slice as it is 
infeasible, the criterion node nc will be able to execute unconditionally in the slice, despite being 
restricted by ng in the original model. This can obviously lead to many traces in the slice which are 
impossible in the original model.  
    The solution to this problem is to label nodes as strongly infeasible if they are synchronisation-
dependent or transitively control-dependent on an infeasible node. Definition 40 gives the formal 
definition of strong infeasibility. 
 
DEFINITION 40. STRONG INFEASIBILITY 

For a node nx and a criterion node nc ∈ Cφ, the function strongInf(nx,nc) returns true iff ∃ na such that  

na ֌nx and (inf(na, nc) or strongInf(na, nc)). 

 ∎∎∎∎    

 
    The infeasibility due to conditional nodes is also transitive. If a node n is termed strongly infeasible, 
then any nodes which are control dependent on n are also strongly infeasible, since they cannot exe-
cute without n either. Since control dependence occurs between a conditional node and its descend-
ents, the result is that all the descendents of a strongly infeasible node will be labelled strongly infea-
sible. The descendents of a synch infeasible node will all be labelled strongly infeasible, due to their 
control dependence to the synchronisation node. 
    The final method for creating the slice is summarised in Definition 41. As in the original definition 
of slicing, the slice is the set of nodes that can be reached via a backwards search starting from the 
criterion node. The previous definition of slicing using threaded witnesses ignores individual nodes 
that cannot be reached by a valid path from the criterion node. This definition instead ignores all 
nodes along maximal paths where the path is not a threaded witness. A node is only added to the slice 
if it is on a dependency path from a criterion node which is not infeasible and if the node is not condi-
tional infeasible or synchronisation infeasible with respect to the criterion node. The extra require-
ments about strong infeasibility ensure that even if there is a valid dependency path, the node will not 
be added if it is strongly infeasible.  
     
DEFINITION 41.    NODES_INF 

For a slice G2 = <N,E, start, end> produced from a BT control flow graph G1 for a formula φ, the slice 

set produced by removing infeasible paths, nodes_infφ(G1), is defined as: 

 cd+/sd 
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nodes_infφ(G1) = {nx ∈ N | ! inf(nx, nc), for some nc ∈ Cφ, and ! strongInf(ny, nc)} U {nc | nc ∈ Cφ and 
size(depPaths(nc)) = 0}. 

 ∎∎∎∎    

 
DEFINITION 42.    SLICE_INF 

Let B be a transition system corresponding to a BT control flow graph G and S be a transition system 

such that S = sliceφ(B) for some formula φ. Then, the function slice_infφ(S) returns the transition 

system of the slice created from the slice set nodes_infφ(G). 
 

 ∎∎∎∎    

 
    After finding all the nodes to add to the slice, a criterion node may itself not have been added to the 
slice. There are two reasons why this can occur: either all of its dependencies were on infeasible paths 
or it does not have any dependencies. In the latter case, the criterion node would not be in the slice 
because no valid dependency path was found from it. This is the reason for the second part of the 
definition of a slice, i.e. {nc | nc ∈ Cφ and size(depPaths(nc)) = 0}. Any criterion nodes which never 
had any dependencies must be added to the slice without any further considerations. This implies that 
the criterion node is always executable.  
    The other possibility is that the criterion node has dependencies, all of which lie on infeasible paths. 
This means that the criterion node is known to be unreachable. Since the criterion is a temporal logic 
theorem, there would normally be several criterion nodes, so the remaining criterion nodes are used 
for creating the slice. If it is the only criterion node representing that component, then that part of the 
formula is replaced with “false”. For example, if the criterion is G(P = p ⇒ Q = q), and if all the state-
realisation nodes involving P are unreachable, then the criterion is replaced with G(false ⇒ Q=q).  
    The following two examples illustrate how infeasible paths can be used to reduce the size of the 
resulting slice. The first example contains a graph with two terminating dependency paths and the 
second example contains a graph with a cyclic dependency path. 
    
Example.     
    As an example, consider the Behavior Tree in Figure 43. Assume the criterion is {C}, which means 
that the slicing process would begin with the node C[c]. This node is control dependent on the node 
B?b?. B?b? is interference dependent on two nodes: the B[b] in the middle thread (labelled with the 
number 1 for ease of explanation) and the B[b] in the last thread (labelled with the number 2). In the 
following, the middle B[b] node will be referred to as B1 and the other B[b] node as B2. The node B1 is 
control dependent on D?d?, which is in turn data dependent on D[d] in the left thread. 

 
Figure Figure Figure Figure 43434343. Example . Example . Example . Example Behavior TreeBehavior TreeBehavior TreeBehavior Tree    
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    The dependency graph for this example is shown in Figure 44. Since there is no reversion, D[d] 
cannot execute before C[c], so it cannot influence the slicing criterion. As in the previous section, the 
notion of threaded witness can be used to identify this situation. The D[d] node will not be included in 
the slice because the chain of dependencies from D[d] to C[c] does not form a threaded witness. How-
ever, the path upto D?d?, which includes the nodes D?d?, B1, B?b? and C[c], does form a Threaded 
Witness. Due to this, all these nodes will remain in the slice. The resulting slice is imprecise, because 
there is no use in including B1 and D?d?. These nodes cannot execute unless D[d] does, so they cannot 
influence the criterion node. On the other hand, B?b? can influence the criterion node, due to its de-
pendency to B2. If B2 executes, the guard B?b? will be satisfied. The infeasible path approach can 
correctly identify which nodes to keep in this situation. There are two maximal paths in the dependen-
cy graph starting at C[c]: one ending at D[d] and one ending at B2. The node B?b? belongs to both of 
these paths. The path ending at D[d] is infeasible, so none of the nodes on that path will be added to 
the slice. The second path is not infeasible, so the nodes C[c], B?b? and B2 will be added to the slice, 
which produces the desired result. 

 ∎∎∎∎    

           
Figure 44. Dependence Graph for the Behavior Tree in Figure 43. 

 
Example. 
    For a second example, consider the Behavior Tree shown in Figure 45. Again assume that the 
slicing criterion is C[c]. The dependency graph for this Behavior Tree is shown in Figure 46. As seen 
in the figure, there is a loop in the dependency graph. This is because the node C?c? depends on the 
initial criterion node C[c]. Since there are no reversions or reference nodes in the tree, it is impossible 
for both C?c? to be dependent on C[c] and for C[c] to be dependent on C?c?. The threaded witness 
approach identifies this conflict as being caused by the second occurrence of C[c]. This results in all of 
the nodes remaining in the slice. 
 

 
Figure Figure Figure Figure 45454545. Example Behavior Tree.. Example Behavior Tree.. Example Behavior Tree.. Example Behavior Tree.    
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    Using the infeasible path approach, there are two maximal paths in the graph: the cyclic path start-
ing and ending at C[c] and the path starting at C[c] and ending at B2. The cyclic path forms an infeasi-
ble path. Therefore, none of these nodes will be added to the slice. On the other hand, the path ending 
at B2 does not form an infeasible path, so the nodes C[c], B?b? and B2 will be all added to the slice. 
This is correct since these are the only nodes that can influence the criterion node. The resulting slice 
has far fewer nodes than the slices obtained by the threaded witness method. 

 ∎∎∎∎    

 
Figure Figure Figure Figure 46464646. . . . Dependence GraphDependence GraphDependence GraphDependence Graph    for the BT in for the BT in for the BT in for the BT in Figure Figure Figure Figure 45454545....    

 
Initialisation Nodes 
 
    Even though a node may have had one or more dependencies that were ignored using the infeasible 
paths method, it will often still have a dependency to an initialisation node. For example, in Figure 44, 
the node D?d? would also be dependent on the initialisation node for the component D. Since D?d? 
now has no other dependencies, the guard will be guaranteed to be satisfied if the initial value for D is 
d, and would not be satisfied otherwise. Using a simple evaluation of the initial node, the outcome of 
the guard can be decided. If the guard cannot be satisfied, then the node will not be able to influence 
the slicing criterion and can be removed. This also applies to attribute nodes; see the Section 4.4.1 for 
an example of a program involving attributes. 
 

4.3     Proof of CorrectnessProof of CorrectnessProof of CorrectnessProof of Correctness    
 
    The infeasible path approach produces more precise slices. In this section, it will be shown that the 
slices produced are also correct, an essential requirement if the slices are to be used for verification. 
As was done in the previous chapter, the notion of bisimulation will be used to provide the correctness 
result. However, unlike the earlier proof, which used a form of weak bisimulation, this proof uses 
strong bisimulation. A slice is bisimilar to the slice with infeasible paths removed. The strong bisimi-
larity arises from the fact that the infeasible paths are paths which could never have executed, even in 
the normal slice. Therefore, despite the normal slice containing extra nodes, the actual behaviour of 
both systems is exactly the same. 
 
THEOREM 3.   

Let G1 be a slice and G2 be the slice obtained after infeasible paths are removed from G1. Then, the 
transition system S corresponding to G1 is bisimilar to the transition system S-Inf corresponding to G2. 

i.e. S ≈b S-Inf. 
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Proof. 

Let S  =  (S1, AP1, I1, L1, N1,→1)  and S-Inf  =  (S2, AP2, I2, L2, N2→2) . In the following, let s, 
s’, s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 
 

∀n ∈ init(S), ∃ m ∈ init(S-Inf). 

⇒ ∀si ∈ I1, ∃ ti ∈ I2 such that L (si) = L (ti). 
 

A relation R can be constructed such that ∀si and ti as above, (si, ti) ∈ R, and  

∀s, t such that s R t, if ∃ s’ ∈ S1, ∃ t’ ∈ S2 and ∃ n ∈ N1, such that s → s’ and  t → t’, then s’ R t’. 
 
To show that R is a bisimulation, the following must hold: 

∀s, t such that s R t,  
(i) L (s) = L (t), 

(ii)  if ∃ s’ ∈ S1 and ∃ n ∈ N1 such that s →s’, then ∃ t’ ∈ S2 such that t →t’, where s’ 

R t’ and 

(iii)  if ∃ t’ ∈ S2  and ∃ n ∈ N2 such that t →t’, then ∃ s’ ∈ S1 such that s →s’, where 

s’ R t’. 

(i)  As shown above, ∀si ∈ I1, and ti ∈ I2 such that si R ti, L (si) = L (ti). 

 ∀s’’, t’’ such that s’’ R t’’ and L (s’’) = L (t’’), if s →s’ and t →t’,  

 ⇒ L(s) = L(s’’) + updates(n) and L (t) = L (t’’) + updates(n). 

 ⇒ L(s) = L(t). 
 

(ii) ∀s, t such that s R t, if s →s’, then ∃ t’ such that t →t’, where s’ R t’. 

 By contradiction, assume ∃ s, t, s’ such that s R t and s → s’ but ∄ t’ such that t →t’ and s’ 
R t’. 

 ⇒ ∃ n such that s →s’but ∄ t’ such that t →t’. 

 Case 1: n ∉ N2. 

∀nc ∈ Cφ, either inf(n, nc) (Case 1a) or strongInf(n, nc) (Case 1b). 

Case 1a: ∀nc ∈ Cφ, inf(n, nc) 

⇒ ∀π ∈ depPaths(nc) such that n ∈ π, infPath(π). 

⇒ ∄ s’ such that s →s’, 
which contradicts the assumption. 

 Case 1b: ∀nc ∈ Cφ, strongInf(n, nc) 

⇒ ∃ na such that  

na ֌nx and inf(na, nc). 

inf(na, nc) ⇒ ∀π ∈ depPaths(nc) such that na ∈ π and infPath(π). 

⇒ ∄ sj, sj+1 such that sj →sj+1 

⇒ ∄ s’ such that s →s’, by Definition 16 and Definition 20, 
which contradicts the assumption. 

Case 2: n ∈ N2 

⇒ n ∈ readyv(s) but n ∉ readyv(t), for some thread v. 

⇒ ∃ nx ∈ N1 such that nx ֌n and nx ∉ N2. 
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⇒ either inf(nx, nc) or strongInf(nx, nc). 

⇒ ∄ sj, sj+1 such that sj →sj+1 in S. 

⇒ n ∉ readyv(s), 
which contradicts the assumption. 
 

(iii) ∀s, t such that s R t, if t →t’, then ∃ s’ such that s →s’, where s’ R t’. 

 By contradiction, assume ∃ s, t, t’ such that s R t and t →t’ but ∄ s’ such that s → s’ and s’ 
R t’. 

 ⇒ ∃ n such that t → t’but ∄ s’ such that s → s’. 

 Case 1: n ∉ N1. 

N2 ⊆ N1 

⇒ n ∈ N1, 
which contradicts the assumption. 
 

Case 2: n ∈ N1 

⇒ n ∈ readyv(t) but n ∉ readyv(s), for some thread v. 
There are two cases: 

Case 2a: ∃ nx ∈ N2 such that nx ֌n and nx ∉ N1. 

N2 ⊆N1 

⇒ n ∈ N1, 
which contradicts the assumption. 

Case 2b: ∃ nx ∈ N1 such that nx ֌n and nx ∉ N2, where nx being in N2 prevents n 
from executing. 

⇒ nx ֌ n or nx ֌n 

nx ∉ N2 

⇒ ∀nc ∈ Cφ, inf(nx, nc) or strongInf(nx, nc) 

⇒ strongInf(n, nc), by Definition 40 

⇒ n ∉ N2, by Definition 41, 
which contradicts the assumption. 

     p 
 

4.4     Slicing AlgorithmSlicing AlgorithmSlicing AlgorithmSlicing Algorithm    
 
    The algorithm for removing infeasible paths is given on the following page. It is based on the algo-
rithm given by Krinke for threaded witnesses. The algorithm recursively explores each node n in the 
dependency graph. An array of nodes lastReached is maintained, which records the last node reached 
so far in each thread. Additionally, the algorithm maintains a list path, which contains the nodes that 
were traversed so far to reach n. Another parameter is last, which is the node that is dependent on n 
that called this function at an earlier iteration. The final parameter is a boolean criterion, which is true 
if n is the criterion node that started this search.  
    First, lines 3-5 check that n is reachable by comparing it with the nodes in the lastReached array. If 
it is reachable, the boolean inf is set to false. Next, line 6 checks whether the inf boolean is false and 
the strongInf boolean, which is an attribute of the node, is also false. The strongInf variable indicates 
whether the node has already been identified as being strongly infeasible. In such cases, the node will 
not be included into the slice even if there is another valid dependency path containing it. If inf and 
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strongInf are both false, n is added to the current path at line 7. Then, lines 8-9 update the lastReached 
array to contain n in each of its threads. Lines 10-14 then recursively call the same function for each 
of the nodes m on which n is dependent. If, for some m, the recursive call returns false, it indicates that 
the path through m is infeasible. If one of the calls returns true, this is recorded in lines 13-14 using a 
boolean pathExists. Additionally, if n is control or synchronisation dependent on some node m and m 
turns out to be infeasible, then the strongInf attribute of n would have changed. Thus, line 15 checks 
whether the pathExists variable is true and makes sure that n’s strongInf attribute is still false. If this is 
the case, it means there is a feasible path containing n. At line 16 it is checked whether n is the criteri-
on node that is the starting point of this backwards traversal of the dependency graph. If so, the entire 
feasible path is added to the slice, in line 17. Otherwise, the function simply returns true, to indicate to 
the previous node that there was a feasible path upto n. 
    Unlike the algorithm for creating the slice, given in Chapter 3, this algorithm does not prevent a 
node from being explored more than once. Therefore, the algorithm is exponential in the worst case, 
in the case where each node is dependent on every other node. However, in practice such a situation 
would rarely occur. Furthermore, as future work it is planned that a polynomial-time algorithm can be 
devised, which stores the required information in such a way as to avoid multiple traversals of the 
same paths in the graph. 
 

 

 bool checkInf (array lastReached, node n, list path, node last, bool criterion){ 

1   t = getThreads(n); 

2   bool inf = true; 

3   for each t do 

4         if (reachable(lastReached[t], n)) then 

5             inf = false; 

         end if 

   next t 

6   if (inf == false AND n.strongInf == false) then 

7         path.add(n); 

8         for each t do 

9              lastReached[t] = n; 

         next t 

10         bool pathExists = false; 

11         for each m in n.getDep() do 

12              bool b = checkInf(lastReached, m, path, n); 

13              if (b) then 

14                   pathExists = true; 

             end if 

         next m 

15         if (pathExists AND n.strongInf == false) then 

16             if (criterion == true) then 

17                 includePath(path); 

             end if 

18             return true; 

         end if 

19         return false; 

20     else   // if inf == true or n.strongInf == true 

21         if (depType(p, n) in {cd, sd} then 

22             p.strongInf = true; 

         end if 

23         return false; 

      end if 
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4.4.1 Side Note: Side Note: Side Note: Side Note: Application to ProgramsApplication to ProgramsApplication to ProgramsApplication to Programs 
 
    This approach is also relevant to programs. Consider the following extract of a program: 
Thread 1      Thread 2 
if (y = 5){  (1)    if (z = 3){  (4) 
 c:=4;   (2)    y:=5;   (5) 
}else{     } 
 z:=3;   (3) 
} 
 
    Assume that the slicing criterion is {c}, so statement 2 is the starting point for slicing. The depend-
ency path through the corresponding PDG is <3, 4, 5, 1, 2>.  Statements 3 and 2 do not form a 
Threaded Witness, so this is an infeasible path. Statement 4 is also dependent on the initial value of z 
and statement 1 is also dependent on the initial value of y. After ignoring the nodes in the infeasible 
path, nodes 2, 1, 5 and 4 all still remain in the slice due to these dependencies to initialisation nodes. 
However, a simple analysis could decide whether or not the guards at 4 and 1 hold. For example, if z 
is initially set to 1, the guard at 4 will never hold, so it can be removed. This illustrates that the Infea-
sible Path approach can reduce the size of program slices, as well as BT models.  
    This chapter described a method for reducing slices further, by removing nodes which lie on infea-
sible paths. The technique can be of use when a slice is still too large for model checking. The method 
was proved to produce correct slices. The next chapter will introduce a novel method for handling 
properties containing the next temporal logic operator. 
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    The slicing algorithms described so far ensure the preservation of  CTL*

-X properties, i.e. properties 
without the next operator, X. This chapter introduces an approach for including extra nodes into the 
slice, in order to preserve all CTL* properties. The approach is based on the observation that proper-
ties with the X operator may not be preserved on the slice because certain stuttering nodes have been 
deemed irrelevant and removed. By identifying these essential stuttering nodes and re-inserting them 
into the slice, the X properties can be preserved. The technique for preserving X properties can be 
applied for any language, by utilising a proposed new form of branching bisimulation called next-
preserving branching bisimulation. Section 5.1 introduces the problem and discusses other solutions 
for it. Section 5.2 describes the proposed approach and gives the definitions for next-preserving 
branching bisimulation. Section 5.3 provides a proof which shows that next-preserving branching 
bisimulation preserves full CTL*. Finally, Section 5.4 demonstrates the application of next-preserving 
branching bisimulation by describing how to create a next-preserving branching bisimilar slice from a 
Behavior Tree. 
 

5.1     The problThe problThe problThe problem of removing stuttering nodesem of removing stuttering nodesem of removing stuttering nodesem of removing stuttering nodes    
      
   When slicing is used for reduction of models for verification purposes, it is essential that the final 
slice preserves the same properties as the original model. In other words, a property holds on the 
original model if and only if it holds on the slice. Therefore, the range of properties that satisfy this 
requirement should be as large as possible, for the benefit of the user who wants to verify a property. 
Unfortunately, slicing does not normally preserve properties containing the X operator. This problem 
is not unique to Behavior Tree slicing; all forms of published slicing algorithms do not claim to pre-
serve properties with X. Refer to Section 1.2 for a discussion about other slicing algorithms. 
    The reason for this problem can be illustrated by a simple example. Consider the trace of behaviour 
shown in Figure 47. Assume that at state s0, the following property is to be verified: Xp. Obviously, 
the property holds, since s1 satisfies p. However, imagine that a slicing algorithm removed s1, because 
it is an unnecessary stuttering step, identical to the previous step. Now, the property no longer holds 
because s2 does not satisfy p.  
 

                          
Figure Figure Figure Figure 47474747. The stuttering problem.. The stuttering problem.. The stuttering problem.. The stuttering problem.    

 
    This problem arises because slicing algorithms only collect nodes which are either observable or in 
some way influence an observable node. Properties with the next operator, however, can even be 
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influenced by nodes which do not have any impact on the variables in the property. There is no way to 
identify such nodes using normal slicing techniques. 
    Vasudevan et al. (2005) proposed an approach termed antecedent conditioned slicing, for slicing 
properties that conform to specific formats. This included formulas with the next operator in the for-

mat G(p ⇒X
k q), where p and q are formulas and  X

k  represents the X operator applied k times. Based 
on conditioned slicing (Canfora, et al., 1998), which restricts a slice to statements satisfying a given 
condition, this approach restricts slices to statements in which the antecedent of the formula holds. 
However, they did not present a proof of correctness nor give details of how they ensure the preserva-
tion of such formulas when stuttering steps are removed. 
    Many authors choose to simply restrict formulas to those without X. Lamport (1983) argued against 
the use of the next operator. His argument was that a step has no meaning in real-life continuous-time 
systems as it is a concept used in models. He argued that a step is only of interest if it represents a 
change in some property of the system and therefore stuttering steps should not be distinguished. 
Lamport suggested that any property involving the next operator could be re-stated in terms of some 
other characteristics of the system. For example, instead of stating that an event x should happen in the 
next step, it should be stated that x will happen before some other event occurs. Dams (1996) gave a 
similar argument against the next operator.  
    Despite these arguments, the next operator is often useful in practice. Since model checking is 
performed on discrete models, it is often useful to specify properties using the notion of steps, where 
each step represents a certain period of time, or a certain phase of the system’s behaviour. In particu-
lar, using the next operator can be an effective technique for specifying a requirement that something 
will occur in a certain period of time. It is not always possible to state the property in terms of other 
events in the system, as suggested by Lamport. It may be the case that an event must happen within a 
certain period of time or phase of the system operation. The modeller may decide that this can be 
represented by a number of steps, without it being restricted to any particular steps. The closest alter-
native would be to use the eventually (F) operator, but for some requirements this may be too weak, as 
it does not provide any guarantee of the period in which something will occur. The next operator is 
therefore essential for specifying such properties. An example of this is the property G(CH4 = high => 

XXX(alarm = sounded)), used in the mine pump case study presented in Section 6.2. In other words, it 
is always the case that when the methane is at a high level, three steps later the alarm should have 
sounded. Obviously, in the real system there would be no notion of steps, so “three steps later” would 
be meaningless. However, it is known that under normal operation, the system should perform certain 
actions before sounding the alarm. Due to the level of granularity of the model, the actions correspond 
to three steps in the model, so can therefore be referred to by three instances of the next operator in the 
formula.  
    The mine pump example introduces the main difficulty with using the next operator on sliced sys-
tems: the difference in granularity between the original model and the slice. Since irrelevant steps are 
removed, a slice step may represent multiple steps in the original model. This presents an obvious 
difficulty when verifying properties that refer specifically to a certain number of steps. The property 
itself gives no clue as to whether the user was referring to steps in the original model or in the slice. 
However, recall that the motivation of slicing is to enable the verification of properties that may have 
not been viable on the original model. Therefore, if a user specifies that x occurs within m number of 
steps, m is referring to the steps in the original model. The ideal goal is to verify such a property on 
the slice, despite the differences in the two notions of steps. 
    Regardless of the arguments for and against the use of the next operator, since many common prop-
erties contain next, it is beneficial to provide the option of slicing with the next operator, for those who 
would find it useful. 
 

5.2     Process of Slicing with the Next OperatorProcess of Slicing with the Next OperatorProcess of Slicing with the Next OperatorProcess of Slicing with the Next Operator    
 
    As explained in the previous section, properties containing the next operator are referring to steps in 
the original model, which may not necessarily correspond to steps in the slice. However, it is only 
necessary to preserve the correct number of steps in the regions of the transition system which are 
relevant for the property. For example, in the mine pump case described above, it is only important to 
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ensure that the state of the alarm component in the slice three steps after the CH4 component reaches 
high is the same as it was in the original three steps after CH4 = high. At these specific locations, the 
steps in the slice should correspond exactly to steps in the original model, but at all other locations, the 
size of the steps are irrelevant. 
    The goal of this approach is to replace certain nodes that were removed by slicing, in order to en-
sure that the size of steps are preserved at these important locations. The question is, how does one 
determine which nodes should be replaced? The answer lies in the observation that the only time a 
property Xφ will not be preserved is when at some point, the next state evaluates φ differently than the 
state two steps later, i.e. the next next step. In fact, it turns out that there are only a finite number of 
places where this phenomena occurs. 
     
5.2.1 IdeIdeIdeIdentifying the relevant locationsntifying the relevant locationsntifying the relevant locationsntifying the relevant locations    
 
    Formulas expressed in CTL* which contain the X operator will always contain either an E or A 
operator somewhere before the X. Recall from Section 2.1 that the X operator is defined over paths, not 
states, which is the reason why there will always be an E or A. Note that unlike for CTL, the E or A 
does not have to necessarily be the operator immediately preceding the X, for example, the formula 
E(p ∧ Xq) is valid in CTL* but not in CTL. Nevertheless, there will always be an outer E or A sur-
rounding any sub-formula containing X. There are therefore two possibilities to consider: if the X 
refers to a specific path (E) or all paths (A). 
    First consider the simplest case, where the formula is AXp, where p is an atomic proposition. Con-
sider the transition system shown in Figure 48. The diagram on the left is the original model and the 
diagram on the right is its slice. In the original system, at state s1, p is true, so s0 ⊨ AXp. In the slice, 
state s1 has been removed, so s0 transitions directly to s2. This presents a problem, since s2 does not 
satisfy p, and thus s0 does not satisfy AXp, which would result in a false counterexample. An identical 
situation occurs for EXp. 

                          
    Figure Figure Figure Figure 48484848. A Model and its Slice. A Model and its Slice. A Model and its Slice. A Model and its Slice 

 
    The converse problem also exists, whereby a false positive result could be obtained. Consider the 
transition system in Figure 49, which is the inverse of the previous transition system. In this case, s0 ⊭ 
AXp in the original model, but s0 ⊨ AXp in the slice. Again, the same situation occurs for EXp.     
    The two cases above are not just simple examples; they demonstrate the general problem. In a 
normal system, there would probably be multiple paths emanating from s0, defining the many possible 
paths of execution of the system from that point. If the formula is AXp, then paths that conform to the 
first case must be preserved, in order to prevent spurious counterexamples. As well as this, paths that 
conform to the second case must also be preserved, to ensure that a real counterexample is not lost. If 
the formula is EXp, a path of the first type must be preserved since it may be the only path that satisfies 

Xp, in which case the formula EXp will only be satisfied if the path is preserved. Similarly, a path of 
the second type must be preserved since there may be no paths that satisfy Xp. In this case, if Xp holds 
on the path after slicing, the formula EXp would hold on the slice whereas it did not hold originally.   
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    Figure Figure Figure Figure 49494949. A . A . A . A Model and its SliceModel and its SliceModel and its SliceModel and its Slice 

 
    The important thing to observe about the above two examples is that the transition e2 is an observa-
ble transition, because it modifies p, which is a variable mentioned in the formula. This is the reason 
that e2 remains in the slice in both cases. For these cases, a simple solution would be to locate all 
observable transitions, and determine whether a stuttering transition executes immediately before it. If 
so, the stuttering transition must be included in the slice, preserving the original behaviour of the 
system.  
    In general, this solution is sufficient for almost all types of properties. Assume that the property is 
AXφ or EXφ, where φ is some arbitrary property not containing the X operator, and that in the diagrams 
above, all p’s are replaced with φ’s. Consider each of the path operators: 
 

� Let φ = Fp. Assume there is a path on which Fp is true at s1 but false at s2. Since only a partic-
ular path is being considered, the only way for the status of Fp to change from one state to 
another is if p became false at s2. Therefore, the same method for including extra transitions 
can be used for this situation. The converse case, where Fp is false at s1 but true at s2, is not 
possible. For any particular path, if p can eventually be reached from s2, then it can be 
reached from s1 as well. 

 
� Let φ = Gp. Assume there is a path on which Gp is true at s1 but false at s2. By the definition 

of G, this is not possible. The same logic shows that it is not possible for Gp to be false at s1 
but true at s2. Therefore, AXGp or EXGp will be preserved in the slice without any extra nodes 
being added. 

 
    For these simple cases, the proposed method for including additional transitions, whereby an extra 
stuttering transition is included for every observable one, works well. In fact, it will be demonstrated 
in Section 5.3 that the method is suitable for almost all types of formulas. The only exception is when 
the formula is of the form AXEφ or EXAφ. Intuitively, this makes sense because a path formula will 
only change its validity from one state to another if one of the atomic propositions in it change. The 
sub-formulas Eφ and Aφ are instead evaluated over states and so the same method is not suitable for 
these types of formulas.  
    To demonstrate the reason why it does not work for state formulas, consider the diagrams in Figure 
50. The transition system shown on the left is the original model and the system on the right is its 
slice, where the transition e1 and state t1 have been removed. Assume the formula is AXE(Fp). There 
are two possible paths from t0: the path <t0, t1, t2, t3> and the path <t0, t1, t4>. The formula holds at state 
t0 on the original model, because on all of the paths from t0, the next state is t1, and from t1 there exists 
a path on which p is eventually true. On the slice, however, the formula does not hold. As in the origi-
nal model there are still two possible paths, but this time the next step after t0 differs on each path. On 
one path the next step is t2, for which there does exist a path where eventually p holds, but on the other 
path the next step is t4, from which there is no possible way to reach a state where p holds. Therefore, 
the formula holds on the original model but not on the slice. 
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    The inverse problem exists for formulas of the form EXA(Fp). Consider again the diagrams in  Fig-
ure 50. The property does not hold at t0 on the original model, since for both possible paths, on the 
next state t1, the property AFp does not hold. On the other hand, t1 has been removed from the slice, so 
the next state differs depending on which path is chosen. On one path, t2 is the next step, and AFp does 
hold at t2, so EXA(Fp) holds on the slice.   
    Note that this problem does not occur for EXEφ or AXAφ. This can be easily seen by considering the 
diagrams above using the formula AXA(Fp). The problem with AXE(Fp) described previously is that at  
t1, there exists a path where Fp holds, but at t4 in the slice, no such path exists. However, at t1, AFp 
does not hold due to the path through t4, so AXA(Fp) does not hold on both models. Similarly, if the 
formula is EXE(Fp), then unlike for EXA(Fp), the formula holds on both models, because at t1, EFp  
holds whereas AFp does not. 
 

       
 

 Figure Figure Figure Figure 50505050. A model and its slice, to illustrate differences in. A model and its slice, to illustrate differences in. A model and its slice, to illustrate differences in. A model and its slice, to illustrate differences in AXE orororor EXA formulas.formulas.formulas.formulas. 
  
        The problems with EXAφ and AXEφ are caused by a state having multiple paths emanating from 
it, where φ may hold on some of the paths but not on others. Note that the problem would not occur if 
both paths were still possible after one branch was chosen. For example, if t3 and t4 looped back to t0 
in the previous figures. Therefore another criteria for identifying these situations is to determine 
whether one of the branches leads to a path which is not possible via the other branch. 
    In conclusion, extra stuttering nodes must be included into the slice before every observable transi-
tion and before every branching point, such that one branch leads to a path which is unreachable via 
the other branch. 
 
5.2.2     Approach for Preserving NextApproach for Preserving NextApproach for Preserving NextApproach for Preserving Next    
 
    Based on the previous discussion, a procedure for creating next-preserving slices becomes evident. 
Extra stuttering steps must be placed into the slice at various locations. Specifically, stuttering steps 
are required before observable steps and certain types of branching paths. The branches are those 
where one of the paths performs an observable steps that is either not present on the other path at all or 
does not occur on the other path within the same number of steps. This is formalised as a function 
diffPaths, defined below, which returns true if and only if there are two paths satisfying the above 
criteria, starting at the given state. 
 
DEFINITION 43.   DIFFPATHS 

Let T be a doubly-labelled transition system such that T = (S, AP, I, L, N, →). 
For a state s ∈ S and a CTL* path formula φ, diffPathsφ(s) iff: 
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∃ ρ1 = < s, aj, sj, aj+1 ...> and ∃ ρ2 = < s, ak, sk, ak+1...>, where sj ≠ sk and either: 
i) ∃ ai ∈ ρ1 such that obsφ(ai) and ai ∉ ρ2 or vice versa, or 
ii)  ∃ m ≥ 0 and ∃ ai ∈ ρ1œsj+m] such that obsφ(ai) and ai ∉ ρ2œsk+m] or vice versa. 

 ∎∎∎∎ 
 
5.2.3 Number of Stuttering Number of Stuttering Number of Stuttering Number of Stuttering TransitionsTransitionsTransitionsTransitions    RequiredRequiredRequiredRequired    
 
    The next consideration is the number of stuttering nodes required. The number depends on the 
formula to be verified, specifically the number of X operators surrounding each atomic proposition. As 
will be seen, in order to ensure that the same verification result is obtained on the slice, an extra stut-
tering step must be included for every X operator. For example, if the formula is AXXp, where p is 
some atomic proposition, two stuttering steps are required before any observable transition or branch-
ing transitions. If the formula is EX(p ∧ Xq), then two stuttering steps are required. This is because the 
q proposition is nested inside two X operators. Even though the p proposition is only surrounded by 
one X operator, the number of stuttering steps required corresponds to the maximum number of nested 
X operators. The number of X operators is referred to as the x-depth of the formula, given by the fol-
lowing definition, which is based on the definition given in Kučera & Strejček (2005) for LTL formu-
las.  
 
DEFINITION 44.   X-DEPTH 

The x-depth of a CTL* formula is given by the following, where ψ1 and ψ2 are state or path formulas 
and φ, φ1 and φ2 are path formulas: 
 

x-depth(ψ) = 0, where ψ ∈ AP, 

x-depth(ψ1 ∧ ψ2) = max(x-depth( ψ1), x-depth( ψ2)), 

x-depth(! ψ1) = x-depth( ψ1), 

x-depth(Eφ) = x-depth(φ), 

x-depth(φ1 U φ2) = max(x-depth(φ1), x-depth(φ2)), 

x-depth(Xφ) = x-depth(φ) + 1. 

 ∎∎∎∎ 
 

5.3     PrePrePrePreservation of Full CTL*servation of Full CTL*servation of Full CTL*servation of Full CTL*    
 
    The discussion so far gave a general explanation for why the inclusion of stuttering steps at certain 
locations allows properties with the X operator to be preserved. This section proves this fact conclu-
sively, by the proposal of a new form of branching bisimulation that requires both transition systems 
to contain extra stuttering steps according to the proposed approach. This new bisimulation is termed 
next-preserving branching bisimulation. The new bisimulation is an extension of branching bisimula-
tion with explicit divergence, as was discussed in Section 2.2.5. As was seen in that previous section, 
branching bisimulation with explicit divergence preserves CTL*-X, which is the variant of CTL* ex-
cluding the next step operator. If two systems are related by a next-preserving branching bisimulation, 
it means they are related by a branching bisimulation with explicit divergence, as well as containing 
extra stuttering steps. Basing the new type of bisimulation on branching bisimulation ensures that it is 
able to preserve CTL*

-X as well. It remains to be shown that next-preserving branching bisimulation 
additionally preserves properties that contain X.  
    The following three definitions explain how the next-preserving branching bisimulation operates 
over states, transition systems and paths, respectively. A next-preserving branching bisimulation must 
satisfy two criteria. The first criterion is that if a state s is related to a state t in another transition sys-
tem via a next-preserving branching bisimulation, then s is related to t via a branching bisimulation 
with explicit divergence. This requires that every observable step taken from s must be matched by an 
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observable step taken from t, possibly preceded by any number of stuttering steps, and vice versa. 
Additionally, every divergent path from s must be matched by a divergent path from t and vice versa.    
    For next-preserving branching bisimulation, there is an additional requirement that if s is followed 
by a number of stuttering steps and then an observable step, t must also be followed by a number of 
stuttering steps before the matching observable step and vice versa. The same holds for the case where 
s is followed by a number of stuttering steps and then reaches a state s’, such that diffPathsφ(s’). The-
se are the two cases of the second criterion in the definition. In these cases, the number of stuttering 
steps required before t is the minimum of the x-depth of the formula φ and the number of stuttering 
steps before s. The reason for this is that x-depth(φ) stuttering steps are necessary in order to preserve 
the formula. However, it may be the case that there are less than x-depth(φ)  steps after s. This indi-
cates that the first system may not have satisfied the formula. Since the aim is to obtain the same 
verification result using the second system, it is only necessary to have as many stuttering steps as 
there were after s. On the other hand, there may be more than x-depth(φ) steps after s, in which case 
the additional steps are unnecessary. 
     
DEFINITION 45. NEXT-PRESERVING BRANCHING BISIMULATION OVER STATES 

Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii, Li, Ni, →i), for i ∈ {1,2}. 

A relation R is a next-preserving branching bisimulation with respect to a CTL* formula φ iff  

 (i)   R is a branching bisimulation with explicit divergence and  

(ii)   for every s R t, where s ∈ T1 and t ∈ T2: 

∀ρ1 ∈ runs(T1), such that ρ1 = < s, a0, s0, a1, s1, ..., sj-1, aj, sj> and ∀i such that  

0 ≤ i < j, ! obsφ(ai), if either: 

� obsφ(aj) or 

� diffPathsφ(sj-1), then: 

∃ρ2 ∈ runs(T2), such that ρ2 = < t, b0, t0, b1, t1, ..., tk, bk, tk+1>, bk = aj, and for some k ≥ 

min(j - 1, x-depth(φ)),∀i such that 0 ≤ i < k, ! obsφ(bi). 

 

Two states s and t are next-preserving branching bisimilar, with respect to a CTL* formula φ, denoted 

s ≛φ t, iff there exists a next-preserving branching bisimulation R  with respect to φ such that s R t. 

 ∎∎∎∎ 
 
    The definition above states that a state s is next-preserving branching bisimilar to another state t iff 
two criteria hold. The first criterion is that s and t are related by a branching bisimulation with explicit 
divergence. The second criterion states that if s is followed by j-1 stuttering steps to a state sj-1, which 
is either followed by an observable step aj or satisfies diffPathsφ, then  t must be followed by k stutter-
ing steps, where k is the minimum of j and the x-depth of the formula. The following definitions ex-
tend this to transition systems and paths. 
 
DEFINITION 46. NEXT-PRESERVING BRANCHING BISIMULATION OF TRANSITION SYSTEMS 

Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii, Li, Ni, →i), for i ∈ {1,2}. 

T1 and T2 are next-preserving branching bisimilar, with respect to a formula φ, denoted  

T1 ≛φ T2, iff  s0 ≛φ t0 for all s0 ∈ I1 and t ∈ I2. 

 ∎∎∎∎ 
 
DEFINITION 47. NEXT-PRESERVING BRANCHING BISIMULATION OVER PATHS 

A path π1 is next-preserving branching bisimilar to a path π2, denoted π1 ≛φ π2 iff for every si ∈ π1, 

there exists a ti ∈ π2 such that si ≛φ ti and vice versa. 

 ∎∎∎∎ 
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    Some auxiliary results will now be established concerning next-preserving branching bisimulation. 
Using these results, Theorem 4 will prove that next-preserving branching bisimilar systems preserves 
full CTL *. The following lemma, Lemma 7, demonstrates the existence of next-preserving bisimilar 
paths when two systems are next-preserving bisimilar. This result arises directly from the definition of 
next-preserving branching bisimilar transition systems. It will be used later in Theorem 4, for the case 
where the property involves a E operator, specifying that there exists a path. 
 
LEMMA 7. EXISTENCE OF NEXT-PRESERVING BRANCHING BISIMILAR PATHS 

Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii, Li, Ni, →i), for i ∈ {1,2}.  

Then, T1 ≛φ T2, ⇒ ∀π1 ∈ T1, ∃ π2 ∈ T2 such that π1 ≛φ π2. 
 
Proof.  By induction over the length m of the path π1 = <s0, s1, ..., sm>. 
 
Base case: m = 0  

T1 ≛φ T2 

⇒∀s0 ∈ I1, ∃ t0 ∈ I2 such that s0 ≛φ t0, by Definition 46 

⇒∃ π2 ∈ T2, such that π2 = <t0>, where π1 ≛φ π2. 
 
Induction step:  

Assume it holds for m = k, i.e. π1 = <s0, s1, ..., sk> and ∃ π2 ∈ T2 such that π2 = <t0, t1, ..., tj> and  

π1 ≛φ π2.  
 
For m = k + 1: 

sk ≛φ tj, by assumption and Definition 47. 

⇒∀s’ ∈ S1, such that s → s’, either s’ ≛φ tj or ∃ t’, t’’ ∈ S2 such that tj ⇢
* t’’ → t’  

and s’ ≛φ t’, by criterion (i) of Definition 45 

⇒ ∀π1’ =  π1 ⌢ s’, ∃ π2’ ∈ {π2 ⌢ <tj+1, ..., t’’, t’>, π2 ⌢ < t’>, π2} such that π1’ ≛φ π2’. 

   p 
    As was discussed previously, for formulas containing an EXA or AXE pattern, normal slicing meth-
ods do not ensure the preservation of the formulas. Recall that A is an operator derived from E. The 
problem arises when there is a state with more than one path emanating from it, where one path leads 
to the satisfaction of a formula but another does not. If the state was reached by a stuttering step, it 
may be left out of the slice, which may cause one or more of the paths to become unreachable at the 
next step, thus changing the outcome of the formula. The proposed solution replaces stuttering steps 
before any state s for which diffPathsφ(s) holds. In other words, a state s which leads to two different 
paths, where on one path there is an observable node that either does not occur on the other path with-
in the same number of steps or does not occur at all. The reason for this requirement is that if there are 
two paths starting from a state s, such that one satisfies a formula but the other does not, then one of 
the paths must have executed an observable step that the other was unable to match within the re-
quired time. This concept is shown by the following lemma, Lemma 8. It is necessary for proving the 
case where the formula contains an X followed by an E in Lemma 9. 
    Assume there is a state s which leads to two different paths, one starting with s1 and the other with 
sk. An example is given in Figure 51 below. Assume that there is a state sj on the first path such that 
the suffix starting at sj satisfies the given CTL* path formula, φ. Further assume that on the second 
path, the suffix starting at sk+j, i.e. j steps after sk, does not satisfy φ. (Note that the state j steps after s0 
on the first path is compared with the state j steps after sk, not s0, on the second path. This is necessary 

 a  a 
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in order to produce the required conditions needed for Lemma 9.) If these conditions hold, the lemma 
states that there is an observable step on one of the paths, such that either the observable step is before 
sj (or sk+j) and the other path has no identical step before sk+j (or sj), or the other path has no matching 
observable step at all.  
 

 
Figure Figure Figure Figure 51515151. The two paths for . The two paths for . The two paths for . The two paths for Lemma 8.Lemma 8.Lemma 8.Lemma 8.    

 
Example. 
Consider again the transition system shown on the left of  Figure 50. The state t1 in the diagram corre-
sponds to s0 in the lemma, as it has two successors, t2 and t4. In the diagram, the path starting from t4 
does not satisfy the formula EFp, whereas the path starting from t1 does. (Using the terminology of the 
lemma, t1 corresponds to sj and t4 corresponds to sk+j, where j = 0). This example satisfies Lemma 8, 
since there is an observable step, i.e. t2 to t3, on the path < t1, t2, t3 > but there is no matching observa-
ble step on the path < t1, t4 >. ∎∎∎∎ 
 

LEMMA 8.  OBSERVABLE STEPS ON BRANCHING PATHS 

Let T be a doubly-labelled transition system such that T = (S, AP, I, L, N, →). 

For a state s0 ∈ S and a CTL* path formula φ,  

if ∃ ρ1 = < s0, a1, s1, a2, s2 ...> and ∃ ρ2 = < s0, ak, sk, ak+1, sk+1 ...>, such that for some j ≥ 0, ρ1[sj∑ ⊨ φ 

and ρ2[sk+j∑ ⊭ φ, and ∀i such that 0 ≤ i < j, ρ1[si∑ ⊨ φ, 

   then diffPathsφ(s0). 
 
Proof. 
By structural induction over φ. 

Let ρ1 = < s0, a1, s1, a2, s2 ...> and ρ2 = < s0, ak, sk, ak+1, sk+1 ...>. Let ρ1[sj∑ ⊨ φ and ρ2[sk+j∑ ⊭ φ. 
 
Assuming that the Lemma holds for ψ1, ψ2, φ1 and φ2. 
 

� φ = ψ: 

� ψ ∈ AP:   

 ρ1[sj∑ ⊨ φ 

 ⇔ sj ⊨ ψ ....(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ sk+j ⊭ ψ  ....(2) 

 ⇒ sk+j-1 → sk+j and obsφ(α), from (1) and (2), 

 ⇒ sj-1 → sj and α ≠ β, from (1), 

 ⇒∃ ai ∈ ρ2œsk+j] such that obsφ(ai) and ai ∉ ρ1œsj],  

 ⇒ diffPathsφ(s0), by criterion (ii) of Definition 43. 
 
� ψ = ! ψ1: 

ak+j 

s0 s1 s2 sj 

sk sk+1 sk+2  sk+j 

a1 a2 aj 

sj-1 

ak 
ak+1 ak+2 

sk+j-1 

ρ1 

ρ2 

... 

... 

 α 

 β 
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 ρ1[sj∑ ⊨ φ 

 ⇔ sj ⊨ ! ψ1 

 ⇔ sj ⊭ ψ1            

 ⇔ ρ1[sj∑ ⊭ ψ1 ....(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ sk+j ⊭ ! ψ1 

 ⇔ sk+j ⊨ ψ1 

 ⇔ ρ2[sk+j∑ ⊨ ψ1   .....(2) 

 ⇒ diffPathsφ(s0), by (1) and (2) and the induction assumption. 
   

� ψ = ψ1 ∧ ψ2 

 ρ1[sj∑ ⊨ φ 

 ⇔ sj ⊨ ψ1 ∧ ψ2 

 ⇔ sj ⊨ ψ1 and sj ⊨ ψ2 

 ⇔ ρ1[sj∑ ⊨ ψ1 and ρ1[sj∑ ⊨ ψ2 ...(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ sk+j ⊭ ψ1 ∧ ψ2 

 ⇔ sj ⊭ ψ1 or sj ⊭ ψ2 

 ⇔ ρ1[sk+j∑ ⊭ ψ1 or ρ1[sk+j∑ ⊭ ψ2 ...(2) 

 ⇒ diffPathsφ(s0), by (1) and (2) and the induction assumption. 
� ψ = Eφ2: 

 ρ1[sj∑ ⊨ φ 

 ⇔ sj ⊨ Eφ2 

 ⇔ ∃ ρ3 = < sj... > such that ρ3 ⊨ φ2. ....(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ sk+j ⊭ Eφ2 

 ⇔ ∀ρ4 = < sk+j... >, ρ4 ⊭ φ2 

 ⇒ ∃ ρ4 = < sk+j...> such that ρ4 ⊭ φ ...(2). 

 ⇒ diffPathsφ(s0), by (1) and (2) and the induction assumption. 
 

� φ = ! φ1: 

ρ1[sj∑ ⊨ φ 

 ⇔ ρ1[sj∑ ⊭ φ1  .....(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ρ2[sk+j∑ ⊨ φ1  ....(2) 

  ⇒ diffPathsφ(s0), by (1) and (2) and the induction assumption. 
 

� φ = φ1 ∧ φ2: 

ρ1[sj∑ ⊨ φ 

 ⇔ ρ1[sj∑ ⊨ φ1 ∧ φ2 

 ⇔ ρ1[sj∑ ⊨ φ1 and ρ1[sj∑ ⊨ φ2 ....(1) 
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 ρ2[sk+j∑ ⊭ φ 

 ⇔ ρ2[sk+j∑ ⊭ φ1 ∧ φ2 

 ⇔ ρ2[sk+j∑ ⊭ φ1 and ρ2[sk+j∑ ⊭ φ2 ....(2) 
 From (1) and (2), either: 
 ρ1[sj∑ ⊨ φ1 and ρ2[sk+j∑ ⊭ φ1 or 

 ρ1[sj∑ ⊨ φ2 and ρ2[sk+j∑ ⊭ φ2 

 ⇒ diffPathsφ(s0), by the induction assumption. 
 
� φ = Xφ1 

 ρ1[sj∑ ⊨ φ 

 ⇔ ρ1[sj+1∑ ⊨ φ1  ....(1) 

 ρ2[sk+j∑ ⊭ φ 

 ⇔ ρ2[sk+j+1∑ ⊭ φ1  ....(2) 
From (1) and (2) and the induction assumption, either (i) or (ii) of Definition 43 holds for 
sj+1 in ρ1 and sk+j+1 in ρ2. 

 Therefore, either (i) or (ii) of Definition 43 holds for sj in ρ1 and sk+j in ρ2 

⇒ diffPathsφ(s0). 
 

� φ = φ1 U φ2 

 ρ1[sj∑ ⊨ φ1 U φ2 

⇔ ∃ v such that v ≥ j and ρ[sv∑ ⊨ φ2 ....(1) 

and ∀w such that 0 ≤ w < v, ρ[sw∑ ⊨ φ1. ....(2) 

ρ2[sk+j∑ ⊭ φ1 U φ2 

⇔ either ∃ x such that 0 ≤ x < y, for some y, where ρ2[sk+x∑ ⊭ φ1 ...(3) 

or ∄y such that y ≥ j and ρ2[sk+y∑ ⊨ φ2 .....(4)  

From (1) and (4), either criterion (i) or (ii) of Definition 43 holds for sv in ρ1 and sk+v in 
ρ2, or 
from (2) and (3), either criterion (i) or (ii) of Definition 43 holds for sx in ρ1 and sk+x in ρ2. 

v ≥ j and x ≥ j, 
 so criterion (i) of Definition 43 holds for sj in ρ1 and sk+j in ρ2 

⇒ diffPathsφ(s0). 

   p 
 

    The following lemma, Lemma 9, uses the previous result. Lemma 9 is for the case of Theorem 4 in 
which the formula contains an X operator. Assume the property to be verified is φ, such that φ =  Xφ’. 

s0 s1 s2 sj sj-1 

 tm 

π1 

π2 

t0  tm-1 

s3 ... 

... 

Figure Figure Figure Figure 52525252. The two paths for . The two paths for . The two paths for . The two paths for Lemma Lemma Lemma Lemma 9999....    
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Assume there are two next-preserving branching bisimilar paths, where a state sj on one path is next-
preserving branching bisimilar to a state tm on the other path and all the steps before sj-1 are stuttering, 
as shown in Figure 52. Further assume that the suffix of the path starting at sj does not satisfy the 
property φ’, while the suffix starting at sj-1 does, or vice versa. Assume that on the second path, all the 
stuttering steps have been removed, such as by using the normal slicing method, leaving only tm. This 
will cause Xφ’ to evaluate to false at t0, whereas it evaluated to true at s0, due to the stuttering steps. 
This lemma shows that such cases are not possible if the paths are next-preserving bisimilar, since 
there must be a certain number of stuttering steps before tm. This holds because at some state s’ on the 
path, one of the sub-formulas φ1 of φ must change its value. This occurs if either an observable step 
occurs at s’ or if s’ leads to another path on which φ1 is satisfied. In the latter case, the result from 
Lemma 8 shows that diffPathsφ(s’) must hold. Let t’ represent the equivalent state on the second path. 
Since the paths are next-preserving bisimilar with respect to φ, there will be stuttering steps before all 
observable and diffPaths states. Therefore, there will be k stuttering steps before t’, where k is the 
minimum of the x-depth of φ and the number of stuttering steps before s’. If the formula φ has an x-
depth of d and the formula φ1 has an x-depth of d2, then the point at which φ1 changes its value, i.e. t’, 
occurs d - d2 + 1 steps after tm-1. Then, as the following lemma shows, it follows that if there are d 
steps before t’, there must be d - d2 steps before tm-1. Using this result, Theorem 4 will show that there 
are enough stuttering steps before tm-1 to ensure that the formula Xφ’ evaluates to the same value at 
both s0 and t0.    
 
Example. 
The following example illustrates how the x-depth(φ) - x-depth(φ1) requirement ensures the correct 
number of stuttering steps are before tm. Let φ =  Xφ’, where φ’ = Xp, for some atomic proposition, p. 
Assume that at sj-1, φ’ is satisfied, while it is not at sj. Thus, sj-1 satisfies Xp, but sj does not, so at the 
state sj, the sub-formula p holds while at sj+1 it does not. The x-depth of p is 0, while the x-depth of φ 
is 2. Thus, there will be 2 - 0 = 2 stuttering steps before sj, which implies that there is 1 stuttering step 
before sj-1, so there is one stuttering step before tm-1. This satisfies the requirement that there is 1 stut-
tering step before sj-1. (The x-depth of φ’ is 1, while the x-depth of φ is 2, so there are required to be 2 
- 1 = 1 stuttering steps before sj-1).     ∎∎∎∎ 
 
LEMMA 9.  INCLUSION OF STUTTERING NODES 

For a path formula φ and two paths π1 = <s0, s1, s2, ... > and π2 = <t0, t1, t2, ... >,  

where π1 ≛φ π2 and ∃sj, tm such that tm ≛φ sj and s0 ⇢
j-1 sj-1 and for some formula φ1, which is a 

sub-formula of φ: 

A) if π1[sj-1∑ ⊨ φ1 and π2[sj∑ ⊭ φ1, where j > 1, then t0 ⇢
k tm-1,  

where k ≥ min(x-depth(φ) - x-depth(φ1), j-1) and 

B) if  π1[sj-1∑ ⊭ φ1 and π2[sj∑ ⊨ φ1, where j > 1, then t0 ⇢
k tm-1,  

where k ≥ min(x-depth(φ) - x-depth(φ1), j-1) 
 
Proof.  By structural induction over the formula φl. 
Induction assumption: Assume that (A) and (B) hold for the formulas ψ2 and ψ3. 
 

� φ1 = ψ1, for some state formula ψ1.  

 Then, π1[sj-1∑ ⊨ φl ⇔ sj-1 ⊨ ψ1 and π1[sj∑ ⊨ φl ⇔ sj ⊨ ψ1.  

�   ψ1 ∈ AP: 
   For Case (A): 

    Assume sj-1 ⊨ ψ1 but sj ⊭ ψ1. 

    fi sj-1 → sj, where obsφ(α)  .........(1) 
α 
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sj ≛φ tm. 

     fi t0⇢
k tm-1, where k ≥ min(x-depth(φ),  j-1), by criterion (ii) of 

Definition 45 and (1). 

x-depth(φ1) = 0, since φ1 ∈ AP. 

fi x-depth(φ) - x-depth(φ1) = x-depth(φ) 

fi k ≥ min(x-depth(φ) - x-depth(φ1),  j-1) 
      
   For Case (B):  Similar reasoning as for Case (A). 

      

�   ψ1 = ψ2 ∧ ψ3, for some state formulas ψ2 and ψ3 
   For Case (A): 

    Assume sj-1 ⊨ ψ1 but sj ⊭ ψ1. 

sj-1 ⊨ ψ1 

    fi sj-1 ⊨ ψ2 and sj-1 ⊨ ψ3  ............(1) 

    sj ⊭ ψ1  

fi either sj ⊭ ψ2 or sj ⊭ ψ3 ............(2) 

    fi either sj-1 ⊨ ψ2 and sj ⊭ ψ2 or 

     sj-1 ⊨ ψ3 and sj ⊭ ψ3, from (1) and (2). 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1),  

by assumption. 
    
   For Case (B): Similar reasoning as for Case (A). 
 

�   ψ1 = ! ψ2, for some state formula ψ2 
 For Case (A): 

  Assume sj-1 ⊨ ψ1 but sj ⊭ ψ1 

sj-1 ⊨ ψ1 

  fi sj-1 ⊭ ψ2. ............(1) 

  sj ⊭ ψ1  

fi sj ⊨ ψ2  ............(2) 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1),  

by assumption, (1) and (2). 
 

 For Case (B): Similar reasoning as for Case (A). 
    
�   ψ1 = Eφ2, for some path formula φ2 
 For Case (A): 

  Assume sj-1 ⊨ ψ1 but sj ⊭ ψ1 

  sj-1  ⊨ ψ1  

    fi ∃ π3 ∈ paths(sj-1) such that π3 ⊨ φ2 

  but ∀π4 ∈ paths(sj), π4 ⊭ φ2 

  Let ρ1 = < sj-1, ar, sr, ar+1, sr+1 ... > = run(π3) 
and ρ2 = < sj-1, aj, sj, aj+1, sj+1 ... > 

  ρ1[sj-1∑ ⊨ φ2 but ρ2[sj∑ ⊭ φ2 
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By Lemma 8 either: 

(a) ∃ ai ∈ ρ1 such that obsφ(ai) and ai ∉ ρ2 or vice versa, or 

(b) ∃ m ≥ 0 and ∃ ai ∈ ρ1œsr+m] such that obsφ(ai) and ai ∉ ρ2œsj+m+1]   
              or vice versa.  

sj ≛φ tm 

fi t0⇢
k tm-1, where k ≥ min(x-depth(φ),  j-1),  

    by criterion (iii) of Definition 45 and (a) and (b) above. 

x-depth(φ) ≥ x-depth(φ) - x-depth(φ1) 

fi k ≥ min(x-depth(φ) - x-depth(φ1),  j-1) 
  

 For Case (B): 

  Assume sj-1 ⊭ ψ1 but sj ⊨ ψ1 

sj ⊨ ψ1 

  fi ∃ π3 ∈ paths(sj) such that π3 ⊨ φ2,  ............(1) 

sj-1 ⊭ ψ1  

fi∀π4 ∈ paths(sj-1), π4 ⊨ φ2.  ............(2) 

  ∃ π5 = < sj-1 > ⌢ π3, from (1) 
  Let ρ1 = run(π5) and ρ2 = run(π3) 

  Case 1: ρ1 ⊨ φ2 

   fi π5 ∈ paths(sj-1) and π5, 
   which contradicts (2), so criterion (B) holds vacuously.  
  Case 2:  ρ1[sj-1∑ ⊭ φ2 

   fi ρ1[sj-1∑ ⊭ φ2 but ρ2[sj∑ ⊨ φ2 
   Using similar reasoning as for Case (A) above,  

fi k ≥ min(x-depth(φ) - x-depth(φ1),  j-1) 
 
Assume that (A) and (B) hold for the formulas φ2 and φ3. 

� φ1  = φ2 ∧ φ3, for some path formulas φ2 and φ3. 
 For Case (A): 
  Assume π1[sj-1∑ ⊨ φ1 but π1[sj∑ ⊭ φ1 

  π1[sj-1∑ ⊨ φ1  

  fi π1[sj-1∑ ⊨ φ2 and π1[sj-1∑ ⊨ φ3 ...........(1) 

    π1[sj∑ ⊭ φ1  

    fi either π1[sj∑ ⊭ φ2 or π1[sj∑ ⊭ φ3...........(2) 

    fi either π1[sj-1∑ ⊨ φ2 and π1[sj∑ ⊭ φ2 or 

     π1[sj-1∑ ⊨ φ3 and π1[sj∑ ⊭ φ3, from (1) and (2). 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - d,  j-1), ............(3) 

          where d = x-depth(φ2) or x-depth(φ3), by assumption 
    x-depth(φ1) = max(x-depth(φ2), x-depth(φ3)), by Definition 44 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1), by (3). 

 
   For Case (B): Similar reasoning as for Case (A). 
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� φ1 = ! φ2, for some path formula φ2 
 For Case (A): 
  Assume π1[sj-1∑ ⊨ φ but π1[sj∑ ⊭ φ1  

    π1[sj-1∑ ⊨ φ1  

  fi  π1[sj-1∑ ⊭ φ2. ...........(1) 

  π1[sj∑ ⊭ ! φ2   

fi π1[sj∑ ⊨ φ2  ...........(2) 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1),  

by assumption, (1) and (2). 
  

For Case (B): Similar reasoning as for Case (A). 
    
� φ1 = φ2 U φ3, for some path formulas φ2 and φ3 
  For Case (A): 
    Assume π1[sj-1∑ ⊨ φ2 U φ3 but π1[sj∑ ⊭ φ2 U φ3. 

     π1[sj-1∑ ⊨ φ2 U φ3  

    fi ∃k such that ∀si ∈ π1, where j - 1 ≤ i < k, π1[si∑ ⊨ φ2,  

       and π1[sk∑ ⊨ φ3, by the definition of ⊨ 

     π1[sj∑ ⊭ φ2 U φ3 

   fi π1[sj∑ ⊭ φ2 and π1[sj∑ ⊭ φ3 

   fi π1[sj-1∑ ⊨ φ3 and π1[sj∑ ⊭ φ3, because otherwise π1[sj∑ would still 

satisfy φ1. 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1),  

by assumption. 
     

  For Case (B): 
    Assume π1[sj-1∑ ⊭ φ2 U φ3 but π1[sj∑ ⊨ φ2 U φ3. 

    π1[sj∑ ⊨ φ2 U φ3 

fi ∃ k > j such that ∀si ∈ π1, where j ≤ i < k, π1[si∑ ⊨ φ2,  

and π1[sk∑ ⊨ φ3, by the definition of ⊨  ........(1) 

fi either π1[sj∑ ⊨ φ3 or π1[sj∑ ⊨ φ2, from (1)  ........(2) 

π1[sj-1∑ ⊭ φ2 U φ3 

fi either ∄ sk such that k ≥ j - 1, where π1[sk∑ ⊨φ3 or   

∃ k such that k ≥ j - 1, where π1[sk∑ ⊨φ3 and ∃ i such that j - 1 ≤ i < k 

where π1[si∑ ⊭ φ2, by the definition of ⊨ 

     fi π1[sj-1∑ ⊭ φ2 and π1[sj-1∑ ⊭ φ3, from (1)  

   fi either π1[sj-1∑ ⊭ φ2 and π1[sj∑ ⊨ φ2,  or 

π1[sj-1∑ ⊭ φ3 and π1[sj∑ ⊨ φ3, from (2). 

    x-depth(φ1) = max(x-depth(φ2), x-depth(φ3)), by Definition 44 

    fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1),  j-1),  

by assumption. 
� φ1 = Xφ2, for some path formula φ2. 

 For Case (A): 
  Assume π1[sj-1∑ ⊨ φ1 but π1[sj∑ ⊭ φ1 
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  π1[sj-1∑ ⊨ Xφ2  

  fi π1[sj∑ ⊨ φ2 ............(1) 

    π1[sj∑ ⊭ Xφ2  

fi π1[sj+1∑ ⊭ φ2 ............(2) 

Let sj → sj+1  

Case 1: obsφ(aj)  

fi t0⇢
k tm, where k ≥ min(x-depth(φ), j), by criterion (ii) of Defini-

tion 45, since sj ≛φ tm. 
x-depth(φ) = x-depth(φ1) + 1  .............(3) 

fi t0⇢
k tm-1, where k ≥ min(x-depth(φ1), j-1) ...........(4) 

x-depth(φ) - x-depth(φ1) = x-depth(φ1) + 1 - x-depth(φ1) = 1, from (3) 

x-depth(φ1) ≥ 1 

fi x-depth(φ1) ≥ x-depth(φ) - x-depth(φ1) 

fi k ≥ min(x-depth(φ) - x-depth(φ1),  j-1), from (4). 
  

Case 2: ! obsφ(aj) 

fi s0 ⇢
j sj   ................(3) 

π1 ≛φ π2 and φ = Xφ2 

fi t0⇢
k tm, where k ≥ min(x-depth(φ) - x-depth(φ2), j), by assump-

tion that Lemma 9 holds for φ2, with (1), (2) and (3). 

x-depth(φ1) = x-depth(φ2) + 1 
fi x-depth(φ) - x-depth(φ2) = x-depth(φ) - x-depth(φ1) + 1 

fi t0⇢
k tm-1, where k ≥ min(x-depth(φ) - x-depth(φ1), j-1) 

      
   For Case (B): 
    Assume π1[sj-1∑ ⊭ φ1 but π1[sj∑ ⊨ φ1 

    π1[sj-1∑ ⊭ Xφ2  

    fi π1[sj∑ ⊭ φ2  ..........(1) 

    π1[sj∑ ⊨ Xφ2  

fi π1[sj+1∑ ⊨ φ2 ............(2) 
The remainder of this case is the same as for Case (A). 

  

     p 
    Theorem 4 is the main result of this section, which demonstrates that two transition systems which 
are next-preserving branching bisimilar preserve the same CTL* formulas. The proof is divided into 
two sections: a proof that if two states are next-preserving branching bisimilar, they preserve CTL* 
state formulas and the same for two next-preserving branching bisimilar paths and the preservation of 
CTL* path formulas. Recall that one of the CTL* state formulas is Eφ, where φ is a path formula. 
This is where the result of Lemma 7 is used, to show that there will always exist a matching path in 
the other system. The second section, concerning the proof of the preservation of path formulas, is 
where the X operator is examined, since it is a path operator. This section utilises the results of Lemma 
9, as explained previously. 
 

αj 
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THEOREM 4.  NEXT-PRESERVING BRANCHING BISIMULATION PRESERVES FULL CTL* 

For two doubly-labelled transition systems T1 and T2, T1 ≛ψ T2 fi (T1 ⊨ ψ ⇔ T2 ⊨ ψ, for all ψ ∈ 

CTL*). 

 

Proof. 

Assume T1 ≛ψ T2. 

 

For this it is required to show that: 

(i) For all state formulas ψ ∈ CTL* and states si ∈ T1 and ti ∈ T2, si ≛ψ ti fi (si ⊨ ψ ⇔ ti ⊨ ψ) and 

(ii) for all path formulas φ ∈ CTL* and paths π1 and π2, π1 ≛φ π2 fi (π1 ⊨ φ ⇔ π2 ⊨ φ). 

 

(By induction over the formula). 
 

Assume that state formulas ψ1 ∈ CTL* and ψ2 ∈ CTL* are preserved by ≛ψ  and ≛ψ  , respectively, 

i.e. T1 ⊨ ψ1 ⇔ T2 ⊨ ψ1 and T1 ⊨ ψ2 ⇔ T2 ⊨ ψ2. 
 
State formulas: 

Since ≛ψ fi ≜, all ψ ∈ CTL*
-X are preserved, by Theorem 1. 

 
For a formula ψ which contains X, if: 

� ψ ∈ AP:  ψ ∈ CTL*
-X 

 Therefore ψ is preserved.  
 

� ψ = ψ1 ∧ ψ2: 

T1 ⊨ ψ  

⇔ s0 ⊨ ψ 

⇔ s0 ⊨ ψ1 and s0 ⊨ ψ2. 

⇔ t0 ⊨ ψ1 and t0 ⊨ ψ2, by assumption. 

⇔ t0 ⊨ ψ 

⇔ T2 ⊨ ψ  
 

� ψ = ! ψ1: 

T1 ⊨ ψ 

⇔ s0 ⊨ ψ 

⇔ s0 ⊭ ψ1 

⇔ t0 ⊭ ψ1, by assumption. 

⇔ t0 ⊨ ψ 

⇔ T2 ⊨ ψ 
 

� ψ = Eφ1, for some path formula φ1.  

  T1 ⊨ φ1 

  ⇔ ∃ π1 ∈ paths(s0) such that π1 ⊨ φ1 

  ⇔ ∃ π2 ∈ paths(t0) such that π2 ⊨ φ1, by Lemma 7. 

1 2 
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  ⇔ T2 ⊨ Eφ1 

  ⇔ T2 ⊨ ψ 
  
 
For path formulas: 
  Assume statement (i) holds for state formula ψ1 and statement (ii) holds for path formu-

las φ1, φ2, and φ3. Let π1 ≛φ  π2, π1 ≛φ  π2 and π1 ≛φ  π2.  Let first(π1) = s0 and first(π2) = t0.  

Assume π1 ⊨ φ and π2 ⊭ φ. The reverse case holds using the same reasoning. 
  

� φ = ψ1, for some state formula ψ1: 

   π1 ⊨ φ 

   ⇔ s0 ⊨ ψ1 

   ⇔ t0 ⊨ ψ1, since s0 ≛ψ  t0, by assumption. 

   ⇔ t0 ⊨ ψ1 

   ⇔ π2 ⊨ φ 
 

� φ = φ1 ∧ φ2: 

  π1 ⊨ φ1 ∧ φ2 

  ⇔ π1 ⊨ φ1 and π1 ⊨ φ2 

  ⇔ π2 ⊨ φ1 and π2 ⊨ φ2, by assumption 

  ⇔ π2 ⊨ φ1 ∧ φ2 
 
� φ = ! φ1 

  π1 ⊨ ! φ1  

  ⇔ π1 ⊭ φ1 

  ⇔ π2 ⊭ φ1, by assumption 

  ⇔ π2 ⊨ ! φ1 
 
� φ = φ1 U φ2 

  π1 ⊨ φ1 U φ2 

  ⇔ ∃ k such that ∀si ∈ π1, where 0 ≤ i ≤ k, π1[si∑ ⊨ φ1 and π1[sk∑ ⊨ φ2 

 ∀sj ∈ π1, ∃ tj ∈ π2 such that sj ≛φ  tj 

 fi ∃ tk ∈ π2 such that sk ≛φ  tk 

  π1[sk∑ ⊨ φ2 iff π2[tk∑ ⊨ φ2, by assumption. .........(1) 

  ∀si, ∃ ti ∈ φ2 such that si ≛φ  ti 

  fi∀si, ti, π1[si∑ ⊨ φ1  ⇔ π2[ti∑ ⊨ φ1, by assumption. .........(2) 

  fi φ2 ⊨ φ1 U φ2, by (1) and (2). 
 
� φ = Xφ1 
  Proof by contradiction. 

  π1 ⊨ Xφ1 and π2 ⊭ Xφ1  

  fi π1[s1∑ ⊨ φ1 and π2[t1∑ ⊭ φ1 .........(1) 

1 2 3 

1 

1 

2 

2 
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  Let t1 be tm and t0 be tm-1. 

π1 ≛φ  π2, by assumption. 

fi ∃j > 1 such that sj ≛φ  tm, by Definition 47. ..........(2) 

fi π1[sj∑ ⊭ φ1, by assumption. .............(3) 

s0 ≛φ  t0, by assumption .............(4) 

Let tm-1 → tm and sj-1 → sj 

fi s0 ⇢
j-1 sj-1 and aj = bm and sj-1 ≛φ  tm-1, by (2), (4) and criterion (i) of Definition 

45  ...........(5) 

fi s0 ≛φ  sj-1, by transitivity of ≛. 

fi π1[sj-1∑ ⊨ φ1, by assumption. 

fi t0 ⇢
k tm-1, where k = min(x-depth(φ) - x-depth(φ1), j-1), by (1), (2), (5) and  

 Lemma 9. 
x-depth(φ) - x-depth(φ1) = 1 
fi k = min(1, j-1) 
Therefore there is at least one step from t0 to tm-1, so tm is not the first step. 
fi π2 ⊨ Xφ1 
which contradicts the assumption.   

  p 
 
 

5.4         NextNextNextNext----Preserving Branching Bisimulation of Behavior TreesPreserving Branching Bisimulation of Behavior TreesPreserving Branching Bisimulation of Behavior TreesPreserving Branching Bisimulation of Behavior Trees    
     
    In the previous section, a technique was proposed for producing reduced models that preserve 
properties containing the next operator, by inserting extra stuttering nodes at certain locations in the 
transition system. This section discusses how to identify such locations in a Behavior Tree model and 
how to locate suitable extra stuttering nodes.  
 
5.4.1 Locations Requiring Extra NodesLocations Requiring Extra NodesLocations Requiring Extra NodesLocations Requiring Extra Nodes    
 
    For a given BT control flow graph, the first step is to identify the states which are followed by an 
observable transition (criterion (i) of Definition 45) and those which are followed by two or more 
transitions (criterion (ii) of Definition 45). Locating observable transitions is simple: every observable 
transition in the transition system corresponds to an observable node in the tree. Therefore, to satisfy 
criterion (i), for every observable node there must be x-depth(φ) extra stuttering nodes in the slice, 
where φ is the property to be verified.  
    Finding states that satisfy criterion (ii) is not so straight-forward. It might appear that the branching 
locations would correspond directly to branching points in the Behavior Tree, but this is not always 
the case. There are some branching locations in the transition system which do not correspond to an 
explicit branching point in the tree. An example of this is a selection node. It implicitly represents two 
branches: the branch where the selection condition holds and the branch where it does not, leading to a 
termination state. As well as this, branching nodes in the Behavior Tree do not always correspond to 
locations where an extra stuttering node must be added, due to the requirement in criterion (ii) that the 
state must satisfy diffPaths. For example, consider concurrent branches. Even when one branch is 
chosen, it does not prevent the other branch from executing as well, since they are parallel threads. 
Any observable nodes in one branch are therefore reachable on all corresponding paths in the transi-
tion system. 

bm aj 

1 

1 

1 

1 

1   
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    The Behavior Tree constructs which lead to branching in the transition system are: alternative 
branching, concurrent branching, thread kills, reversions, reference nodes and conditional nodes.  
Each of these will be discussed below. 
 
Concurrent branching:  In BT control flow graphs, concurrent branching occurs when a node n has 
more than one child, each connected to n by a concurrent edge. Obviously, the state immediately after 
n has executed has multiple branches in the transition system. However, this is not the only set of 
branches in the transition system caused by the concurrent nodes. Every node in each thread can be 
interleaved with the nodes in the other threads. After each node has executed, there are several possi-
ble choices over which node can execute next. Therefore, each state that results from one of the nodes 
executing will have multiple branches. 
    Despite this, none of these states satisfy criterion (ii) of Definition 45, as they do not satisfy the 
diffPaths requirement. Concurrent branches never cause the other branches to terminate, unless there 
is an explicit thread kill node or if one of the branches ends with a reversion which terminates the 
other threads. These cases can be identified by locating thread kill and reversion nodes, as described 
below. The definition of diffPaths requires that there is an observable node on one path that either 
cannot execute on the other path at all or cannot execute within the same number of steps. However, 
concurrent branching allows full interleaving semantics. Therefore, the situation required by diffPaths 
never occurs. If an observable node can be reached by executing one of the concurrent branches in the 
Behavior Tree, it is always possible to find a path from the other branch that will also lead to the same 
observable node executing, within the required time. Therefore there is no need to add stuttering 
nodes before concurrent branching points.  
 
Alternative branching: This is different to concurrent branching, because once the choice of which 
branch to take has been made, the other branches will be terminated. There is no interleaving behav-
iour between the nodes in the branches. Let n be a node with more than one child, such that the chil-
dren form an alternative branching group. The only state which has multiple outgoing transitions due 
to this branching group is the state immediately after n has executed, where the choice of which 
branch to take has not yet been made. Once a branch has been chosen, the other branches will termi-
nate. This satisfies the requirement that there is an observable node in one path of the transition sys-
tem that is unreachable via the other path.Therefore, alternative branches correspond to locations 
where stuttering nodes are necessary. There are cases where the other paths are still reachable, such as 
if the branches have reversions which cause the alternative branching point to be reached again. Since 
this is not always the case, it is safer to always add stuttering nodes to alternative branching points. If 
the other branches are reachable, the unnecessary stuttering nodes would not significantly increase the 
size of the slice. 
 
Thread kill nodes: When a thread kill node executes, it terminates the thread in question. Thus, in the 
corresponding transition system, the state after the thread kill node executes leads to a path from 
which the terminated thread is unreachable. At the previous step, the thread is still reachable, because 
there are at least two possible branches: the thread kill step or a node in a concurrent branch. Conse-
quently, stuttering nodes must be added before thread kill nodes. 
 
Reversion nodes: Reversion nodes seem to be likely candidates for this type of behaviour, because 
after the reversion executes, some threads are terminated. However, the terminated threads are still 
reachable, since after the reversion is taken, at some point the threads will be re-started. Therefore 
there is no need to include extra stuttering nodes before reversions.  
 
Reference nodes: Reference nodes are different to reversions, primarily because they do not cause any 
threads to be terminated. As a result any threads which were executing in parallel to the reference 
node will continue to execute. Nodes in alternative branches to the reference node would have already 
been terminated when the alternative branching choice was made prior to reaching the reference node. 
Hence it is not necessary to include extra stuttering nodes before reference nodes. 
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Conditional nodes: As discussed in Section 3.1, conditional nodes correspond to two possible transi-
tions in the transition system: the branch where the condition holds and the branch where it does not. 
Consequently, at the step before the condition is evaluated, the two paths are still possible, but after 
one is chosen, the other path may be no longer possible. Since the verification property can never be 
referring to a value on the implicit false branch of the condition, the only relevant case is where the 
false branch has been chosen and the true branch is no longer reachable. For guard and synchronisa-
tion nodes, even when the false branch has been chosen, the true branch can still eventually be 
reached, since the false branch is a loop back to the conditional node. Thus, the only conditional nodes 
which can prevent a path from being reached are selection nodes, where the false branch leads to the 
END state. This is the only case which requires additional stuttering nodes. 
    The following lemma formalises the previous discussion, showing that the only cases which pro-
duce branches where one path leads to an observable step that is unreachable from the other path are 
alternative branches, thread kill and selection nodes. In the lemma, the term reachable is used to 
denote that a node can be reached on the other path within the required number of steps.  
 
LEMMA 10.    BRANCHES IN BEHAVIOR TREES 

Let S  =  (S1, AP1, I1, L1, N1,→1) be a doubly-labelled transition system. Let branching = {n | ∃ s, 

s’, s’’, s’’’ ∈ S1 where s →s’ →s’’ and s’ →s’’’ and s’’ ≠ s’’’ and ∃ a node m ∈ N1 such that m 

is reachable from s’’ but not from s’’’ and obsφ(m)}. 

Then, ∀n ∈ branching, either: 

(a) ∃ n1, n2 such that parent(n1) = parent(n2) = n and alt(n1, n2),  or 
(b) flag(n) = threadKill   or 
(c) type(n) = selection. 

 
Proof. 

Let n be a node such that ∃ s, s’, s’’, s’’’ ∈ S1 where s →s’ →s’’ and s’ → s’’’ and s’’ ≠ s’’’. 
There are several cases: 
Case 1:   

parent(ny) = parent(nz) = nx and alt(ny, nz), 
which satisfies (a). 

Case 2: 

conc(ny, nz) and flag(ny) ≠ threadKill and flag(nz) ≠ threadKill 

⇒ m is reachable from ny and nz, 

⇒ m is reachable from s’’ and s’’’. 
 

Case 3:  
conc(ny, nz) and flag(ny) = threadKill 
which satisfies (b). 

Case 4: 
conc(ny, nz) and flag(ny) = reversion 

Let na be a node such that ∃ v ∈ threads(na) which is terminated by ny, 

⇒ v ∈ threads(target(ny)) 

⇒ na ∈ desc(target(ny)) 
so na can be reached again. 

⇒ m is reachable from ny and nz, 

⇒ m is reachable from s’’ and s’’’. 
Case 5: 

conditional(n) 

n 

n 
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Case 5.1:  type(n) ≠ selection 
 Let e = edge(n, child(n,0)), where label(e) = false. 

 ⇒ e = edge(n, n), i.e. the edge loops back to n. 

  ⇒ m is reachable from ny and nz, 

  ⇒ m is reachable from s’’ and s’’’. 
Case 5.2:  type(n) = selection 
 which satisfies (c). 

        

      p 
 

    A set extraφ(G1, G2) contains the stuttering nodes that must be added for a given BT control flow 
graph G1 and its slice G2. For every observable node, alternative branching group, thread kill and 

selection node, there must be x-depth(φ) stuttering nodes in extraφ(G1, G2), or at least as many stutter-
ing nodes as existed in the original model. 

    A function nodes_next is introduced in the following definition. It returns the set of nodes that 
encompass the final next-preserving slice. This includes the nodes from the normal slice as well as the 
nodes in the extra set. 
 
DEFINITION 48.   NEXT PRESERVING SLICE SET 

For a slice G2 = <N2,E2, start2, end2> produced from a BT control flow graph G1 = <N1,E1, start1, 

end1> for a formula φ, the slice set that preserves the next operator, nodes_nextφ(G1), is defined as: 

nodes_nextφ(G1) = N2 ∪ extraφ(G1, G2). 

 ∎∎∎∎ 
 
5.4.2 Finding Extra Stuttering NodesFinding Extra Stuttering NodesFinding Extra Stuttering NodesFinding Extra Stuttering Nodes    
 
    The next step is to locate a set of suitable nodes to be included back into the slice. Let n be the node 
for which extra stuttering nodes must be included before it. The nodes should all be stuttering and 
should be able to execute immediately before n. If there are stuttering nodes in the slice that always 
execute before n, i.e. on every trace, then these nodes should be selected instead of nodes that only 
execute before n on some traces. 
    If n has a parent which is stuttering and is not already in the slice, the parent is a suitable choice. 
The parent is guaranteed to be able to execute before n. On the other hand, nodes in concurrent 
branches may execute before n but are not guaranteed to always do so. If a stuttering parent existed in 
the original model, it always had to execute before n. If a concurrent node is included into the slice 
instead of the parent, then the slice would have traces where no stuttering node executes before n, a 
trace which was impossible in the original model. The parent should therefore be the first choice of 
which stuttering node to include. For some formulas, more than one stuttering node may be necessary. 
In these cases, if there are more ancestors which are stuttering, these should be included next. 
    If the parent is not stuttering, or there are not enough stuttering ancestors to form the set of nodes to 
be included, the next choice is to include concurrent nodes. In most cases, the nodes in parallel threads 
can be interleaved in any order, so a concurrent node may execute before n or after it. There are traces 
where n executes first, unlike for the case of ancestor nodes. Nevertheless, assuming that all stuttering 
ancestors have been already included, this is not a problem, since the original model must have also 
had such traces. The goal of including the stuttering steps in this case is to preserve at least one of the 
traces in which the concurrent node executes immediately before n. The only difficulty lies in the fact 
that some concurrent nodes may not be able to execute before n due to some dependencies. For this 
reason, when including concurrent nodes, their dependencies must also be considered. If any nodes 
have no dependencies, or only have the same dependencies as n itself, these should be the first choic-
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es. (If a node has the same dependencies as n, then those dependencies must have been satisfied since 
n is able to execute).  
    If all concurrent nodes have dependencies, it is not easy to determine statically which ones will be 
able to execute at the right time. A useful characteristic of Behavior Trees is that the nodes in any 
given thread cannot execute until their ancestors have executed, so the root node of a thread must 
execute before any of its descendents. Since the aim is to locate nodes which can execute before n, it 
is unnecessary to search further down a thread than the root nodes. If a node further down can execute 
before n, the root node can execute before n as well. The reverse is not always true, because the de-
scendents may have additional dependencies which the root does not have. If the original model had 
traces where a parallel stuttering node executed before n, it is sufficient to include any root node of a 
parallel thread which has no dependencies other than those that n has. If there are not enough of those 
nodes in the tree, the next choice is to include root nodes which have dependencies. Since it is not 
possible to determine which of the dependency conditions will be satisfied, each of the root nodes 
must be included in the slice. This way, if one of them is able to execute before n, it will be able to do 
so in the slice. Including some nodes which are not able to execute before n will not change the out-
come of the verification; it will only cause the slice to be more imprecise.  
    A function slice_next is introduced in the following definition. It returns the transition system of the 
slice that contains the extra stuttering nodes as described.  
 

DEFINITION 49.   NEXT PRESERVING SLICE 

Let B be a transition system corresponding to a BT control flow graph G and S be a transition system 

such that S = sliceφ(B) for some formula φ. Then, the function slice_nextφ(S) returns the transition 

system of the slice created from the slice set nodes_nextφ(G). 

 ∎∎∎∎    

5.4.3 Proof of CorrectnessProof of CorrectnessProof of CorrectnessProof of Correctness    
 
    In this section, a proof of correctness will be presented which shows that if extra nodes are inserted 
into a slice of a Behavior Tree according to the method described in the previous sections, the result-
ing slice will be next-preserving branching bisimilar to the original model. Using the results of previ-
ous chapters, it is easily established that the slice given by slice_next is related to the original model 
by a branching bisimulation with explicit divergence. This satisfies the first critierion of Definition 45. 
The remaining two criteria also hold if stuttering nodes have been included using the method de-
scribed in this section. 
 
 
THEOREM 5.   

Let B be a transition system corresponding to a BT control flow graph and S be a transition system 

such that S = sliceφ(B) or S = slice_infφ(B). Then, the transition system T = slice_nextφ(S) is next-

preserving branching bisimilar to S, i.e. S ≛φ T. 
 
Proof. 

Let S  =  (S1, AP1, I1, L1, N1,→1)  and T  =  (S2, AP2, I2, L2, N2→2) . In the following, let s, s’, 
s0, s1, ... range over S1 and t, t’, t0, t1, ... range over S2. 
There are three criteria for next-preserving branching bisimulation, as given in Definition 45. 
 
Criterion (i): 

If  S = sliceφ(B) 

⇒ S ≜B, by Theorem 2. 

Otherwise, if S = slice_infφ(B), 
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⇒ S ≘ S’, where S’ the transition system such that S’ = sliceφ(B), by Theorem 3.  

S’ ≜ B, by Theorem 2. 

⇒ S ≜ B. 
 
Criterion (ii): 

∀s’, s’’, t’’, such that s’’ R  t’’, if s ⇢j  s’ → s’’ and obsφ(nx), then t ⇢k  t’, where 

      t’R s’ and k ≥ min(j, x-depth(φ)). 
This holds, by the definition of extra. 

 
Criterion (iii): 

∀s’, s’’, t’’, such that s’ R  t’ and s’’ R  t’’, if s  ⇢j  s’→ s’’ and  

s’ → s’’’, where s’’ ≠ s’’’ and ∃ α ∈ N1 such that obsφ(α) and α is reachable from s’’ but not 

from s’’’, then t ⇢k  t’, where k ≥ min(j, x-depth(φ)). 
 

If s  ⇢j  s’→ s’’ and s’ → s’’’, where s’’ ≠ s’’’, 
then either: (where nx is the node that executed immediately before s’) 
 

By Lemma 10, the only cases are: 

(a) ∃ n1, n2 such that parent(n1) = parent(n2) = n and alt(n1, n2),  or 

(b) flag(n) = threadKill   or 

(c) type(n) = selection. 

 

⇒ ∃ k nodes in N2 that can execute immediately before m, where k ≥ min(j, x-depth(ψ)), by the 

definition of extra. 

    p    

 
Theorem 1    In this chapter, it has been shown that next-preserving branching bisimulation guarantees 
the preservation of all CTL* formulas, including the next step. This result can be used for any applica-
tion that requires all CTL* formulas to be preserved. The user only has to demonstrate that a next-
preserving branching bisimulation exists for their two models. Note that since this method involves 
including additional nodes, it is unnecessary for formulas which do not contain the X operator. For 
these formulas, it would be better to use the normal slicing algorithms presented in previous chapters. 
Furthermore, this chapter has demonstrated that a next-preserving branching bisimulation holds be-
tween a Behavior Tree B and a slice given by slice_next(B).  

nx 

ny nz 



  
 

  
 
    This chapter demonstrates the techniques presented in previous chapters on two case studies. Sec-
tion 6.1 describes how the slicing algorithms have been implemented as part of an existing Behavior 
Tree editor. The subsequent sections describe the case studies. For each case study, an existing Behav-
ior Tree was used, along with a set of properties to be model checked. A set of slices were construct-
ed, one for each property, using the algorithms given in Chapter 3. The time taken to verify the slices 
was then compared with the time taken for the original model. The two case studies were selected in 
order to demonstrate the use of slicing on different types of models, where the Behavior Trees have 
different structures. The first case study, a mine pump, is typical of many embedded systems, which 
have a software controller and hardware sensors and actuators. The components communicate with 
each other via message passing. This case study is described in  Section 6.2. The second case study is 
a hospital information system. It is a typical database system, which stores information about various 
users of the system. The accessing of information is governed by a set of access control rules. The 
details of this case study are given in Section 6.3. 
 

6.1         Slicing Slicing Slicing Slicing ImpleImpleImpleImplementationmentationmentationmentation    
 
    The slicing algorithm presented in Chapter 3 has been implemented by the author. The slicer oper-
ates as part of the existing Behavior Tree editor called Integrare (Wen, et al., 2007). Integrare is a 
Behavior Tree drawing editor which also includes functionality such as extracting keywords from 
textual requirements, linking to a simulator and automatically translating Behavior Trees into the 
model checking languages SAL (de Moura, et al., 2004) and UPPAAL (Larsen, et al., 1997). A 
screenshot of the Integrare tool is given in Figure 53. The new slicing component links to the existing 
SAL translator, which is a function of Integrare. The SAL translator is described briefly in Section 
2.3.3. Full details of the translation process can be found in Grunske et al. (2008). Figure 54 shows an 
example of the translation output given by the SAL translator.     
    The slicing component was written in Visual C++ (MFC), to allow it to be compatible with the 
existing Integrare source code. The slicer operates according to the algorithms given in Chapter 3. It 
takes a list of components as an input. These are the components mentioned in the temporal logic 
theorem to be model checked. The slicer then automatically creates a dependence graph for the select-
ed Behavior Tree. The dependence graph is stored in memory, not explicitly shown to the user. Using 
the list of components, the nodes that form the slicing criterion are then identified. The slice is then 
created by traversing the dependence graph starting at the criterion nodes.  The nodes collected during 
the traversal are re-formed into a syntactically correct Behavior Tree. The slice is then passed to the 
translator, which treats it as an ordinary Behavior Tree and translates it into the requested model 
checking language. 
    The overall system is illustrated in Figure 55. The new section of the tool, the slicer, is shown in a 
dotted box amidst the existing functions. These concepts are not limited to the Integrare tool; it simply 
demonstrates that the slicing algorithms of this thesis can be implemented. In a similar manner, the 
slicing algorithms could be implemented to interface with any Behavior Tree editor, such as the latest 
Behavior Tree editor TextBE (Myers, 2011). 
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Figure Figure Figure Figure 53535353. A Screenshot of the Int. A Screenshot of the Int. A Screenshot of the Int. A Screenshot of the Integrare Drawing Paneegrare Drawing Paneegrare Drawing Paneegrare Drawing Pane 

 
Figure Figure Figure Figure 54545454. Screenshot Showing Translation Pop. Screenshot Showing Translation Pop. Screenshot Showing Translation Pop. Screenshot Showing Translation Pop----up Window.up Window.up Window.up Window.    
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    Figure Figure Figure Figure 55555555.  The Slicing Tool as Part of Integrare..  The Slicing Tool as Part of Integrare..  The Slicing Tool as Part of Integrare..  The Slicing Tool as Part of Integrare.    

    

6.2         Mine Pump Case StudyMine Pump Case StudyMine Pump Case StudyMine Pump Case Study    
     
    This section presents a case study of a mine pump, taken from Grunske et al. (2011). The case study 
was selected because of its structure which is common to many embedded systems, where a software 
controller makes decisions and interacts with hardware sensors and actuators. The system also re-
ceives input from the environment. Two more systems in the same style are given by Grunske et al. 
(2011).  
    The case study models a system which controls the amount of water in a mine using a water pump. 
Two sensors indicate the current level of the water: a low water sensor indicates when the water has 
reached a low level, while a high water sensor indicates when the water has reached a high level. The 
pump automatically activates when the water is high, pumping the water out until it is a normal level 
again. Similarly, when the water reaches a low level, the pump automatically turns off. There is a 
mechanism to allow a human operator to control the pump, as long as the water is between the high 
and low levels. A supervisor has higher authority. He or she may turn the pump on or off regardless of 
the level of the water. Three other sensors monitor the environment for health and safety reasons. 
These are: an airflow sensor, a CH4 (methane) sensor and a CO (carbon monoxide) sensor. If the 
methane reaches a critical high level, it is imperative that the pump be turned off and remain unopera-
tional until the methane levels have dropped back to a normal level. The other safety precaution is that 
if the airflow becomes critically low or the CO levels become critically high, the personnel must 
immediately evacuate the mine. In this case, the system must trigger an alarm to warn the personnel. 
 
6.2.1 Behavior Tree of the Mine PumpBehavior Tree of the Mine PumpBehavior Tree of the Mine PumpBehavior Tree of the Mine Pump    
    
    The Behavior Tree of the mine pump is designed in a style where each component is modelled 
separately in individual threads. This reflects the component-based structure of the  actual system. 
Communication between the threads is accomplished using message passing. The full Behavior Tree 
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is too large to be shown here, so its basic structure is given in Figure 56. The tree consists of eleven 
main threads; one for each of the components, people and environmental aspects interacting with the 
system: the software controller, pump, supervisor, operator, personnel, CH4 sensor, CO sensor, air-
flow sensor, low water sensor, high water sensor and the environment. The controller maintains inter-
nal representations of each of the sensors and the pump, in order to keep track of each component’s 
status. The controller thread is sub-divided into a main thread which describes the behaviour of the 
controller and several threads which continually check the state of the sensors and pump and update 
the controller’s internal representations of them.  
 

 
    Figure Figure Figure Figure 56565656. Overview of the Mine. Overview of the Mine. Overview of the Mine. Overview of the Mine    pump Behavior Tree.pump Behavior Tree.pump Behavior Tree.pump Behavior Tree.    

 
    A part of the controller thread is shown in Figure 57. The main responsibility of the controller is to 
control the pump by sending requests for it to turn on or off as required. The controller thread is 
guarded by a node that checks whether the CH4 is at a normal level. If so, the pump can operate. The 
controller then decides its next actions depending on whether the pump is currently on or off. If it is 
on and the water level has reached a low level, the controller sends a message to turn off the pump. 
Alternatively, if the operator requests to turn off the pump, the controller checks whether the water is 
between the high and low levels and if so, sends a message to turn off the pump. The supervisor may 
also request to turn off the pump. (This behaviour has not been shown here to save space). This action 
is allowed regardless of the current water level. The behaviour of the controller when the pump is off 
is the exact opposite: the controller sends a message to turn on the pump if either the water level is too 
high, the supervisor requests it or the operator requests it and the water level is normal.  
    The supervisor and operator threads are quite similar. Both of them non-deterministically decide to 
turn on or off the pump and send requests to the controller as required. Neither of the threads perform 
any functions if the controller decides that the pump must remain non-operational due to high methane 
levels. The personnel thread simply waits to be instructed to either enter or exit the mineshaft. These 
messages are sent by the controller, depending on the state of the CO and airflow sensors. There are 
no output message nodes in the personnel thread. 
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Figure Figure Figure Figure 57575757. Part of the Controller Thread. Part of the Controller Thread. Part of the Controller Thread. Part of the Controller Thread    

 
 
    The five sensor threads are all almost identical. Each waits for messages from the environment. 
After updating the state to reflect the environmental change, each sensor then sends out a message to 
the controller to inform it of its change in state. These actions all occur atomically. For example, the 
CO sensor, shown on the left of Figure 58, changes to the high CO state when it receives the 
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high_CO_level message from the environment and to the normal CO state when it receives the nor-
mal_CO_level message. It then sends out the messages high_CO_detected and normal_CO_detected, 
respectively. 
    The pump thread is also very similar to the sensors, except that instead of responding to messages 
from the environment, it responds to messages from the controller, requesting the pump to turn on or 
off. 
    The environment thread represents the external environment. It is divided into four threads, repre-
senting the methane, the airflow, the carbon monoxide and the water in the mine pump. External input 
messages model the environmental changes. Each external input message causes a change in state of 
one of the environment attributes. Additionally, a message is sent out to the corresponding sensor to 
inform it of the change. This occurs atomically, to prevent erroneous behaviour caused by interleav-
ings with other threads before the message has been sent. Part of the environment thread describing 
the carbon monoxide is shown on the right of Figure 58. Note that the high_CO_level output message 
corresponds to the input message the CO sensor is waiting for. 
 

 
Figure Figure Figure Figure 58585858. CO Sensor Thread and Environment CO Thread. CO Sensor Thread and Environment CO Thread. CO Sensor Thread and Environment CO Thread. CO Sensor Thread and Environment CO Thread    

 

 

    In (Grunske, et al., 2011), this mine pump Behavior Tree was used for Failure Modes and Effects 
Analysis (FMEA). However, the model used here contains some modifications in order to more accu-
rately reflect the requirements. The most significant change is that in the version in (Grunske, et al., 
2011), when the pump is turned off due to high methane levels, the supervisor can still turn it back on, 
whereas in this version, the pump remains non-operational until the methane returns to a normal level. 
Due to these differences, the model checking times given in (Grunske, et al., 2011) are significantly 
different to those given in the next section. 
 
6.2.2 Slicing and Verification of the Mine PumpSlicing and Verification of the Mine PumpSlicing and Verification of the Mine PumpSlicing and Verification of the Mine Pump    
 
    There are three safety properties which the mine pump must fulfill. If the methane reaches a criti-
cally high level, it is dangerous to continue operating the pump so it must be switched off. If the air-
flow reaches a low level, or the carbon monoxide reaches a high level, it is unsafe for the personnel in 
the mineshaft, so they must evacuate. These properties have been formalised as temporal logic theo-
rems as follows: 

CO Sensor 

[ Normal CO ] 

CO Sensor 

> high_CO_level < 

CO Sensor 

> normal_CO_level < 

 

CO Sensor 

[ high CO ] 

CO Sensor 

< high_CO_detected > 

              CO Sensor         => 

> normal_CO_level < 

 

CO Sensor 

[ normal CO ] 

CO Sensor 

< normal_CO_detected > 

            CO Sensor          => 

> high_CO_level < 

 

Environment 

>> CO high << 

Environment 

[ CO := high ] 

Environment 

< high_CO_level > 

Further behaviour 
not shown here. 



Mine Pump Case Study  
 

117

Th1. G (environment_CH4 = high ⇒ F(pump = off)) 

It is always the case that if the methane is high, eventually the pump will be off. 
 

Th2. G (environment_airflow = low ⇒ F(personnel = notInMineshaft)) 

   It is always the case that if the airflow is low, eventually the personnel will not be in the 
mineshaft. 

 

Th3. G (environment_CO = high ⇒ F(personnel = notInMineshaft)) 

   It is always the case that if the carbon monoxide is high, eventually the personnel will 
not be in the mineshaft. 

 
    In (Grunske, et al., 2011), the properties were formalised slightly differently, with nested X opera-
tors instead of  the F operator in each theorem. Using those formulas, the pump is required to turn off 
within a certain number of steps and similarly for the personnel in the mineshaft. The weaker forms of 
the theorems, as shown above, have been chosen here in order to demonstrate the application of the 
normal slicing algorithm presented in Chapter 3, without having to add extra nodes according to the 
method given in Chapter 5. 
    The first step is to create the dependency graph for the mine pump Behavior Tree. This can be re-
used for each of the theorems. The dependency graph is created internally by the slicing tool. Within 
each thread, there are control dependencies to selection and external input nodes. There are no data 
dependencies in the model, but there are interference dependencies between the main thread of the 
controller and the sub-threads which update the various attributes of the controller. There are message 
dependencies between many of the components. In particular, nodes in each sensor thread are mes-
sage-dependent on some nodes in the environment threads. Nodes in the controller thread are mes-
sage-dependent on nodes in each of the sensor threads, as well as the supervisor and operator threads. 
This reflects the role of the controller, which is to monitor the state of these other components and 
control the pump accordingly. There are no synchronisation dependencies. Finally, there are termina-
tion dependencies caused by some of the reversions. An interesting example of this is the reversion 
which executes after the controller learns that the methane is high. Its target is an ancestor of all of the 
controller sub-threads, so when the reversion executes, all of those threads are terminated. None of the 
controller’s behaviour can be re-started until the methane is detected to be at a safe level again. 
 
Theorem 1 
    The next step is to locate the nodes that will be in the slice, by performing backwards traversals of 
the dependency graph starting at the criterion nodes. Consider the first theorem. The slicing criterion 
is {Environment_CH4, Pump}. Therefore the variables of interest are the pump and the attribute repre-
senting the methane in the environment. The criterion nodes are any state realisations which modify 
either of these variables. In this Behavior Tree, there are four such nodes: Pump[off], Pump[on], 
Environment[CH4 := high] and Environment[CH4 := normal].  
    Some of the relevant dependencies are given in Table 2. The criterion nodes are shown in italics. 
The two environment nodes only have control dependencies to the external input nodes Environ-

ment>>CH4 high<< and Environment>>CH4 normal<<. The external input nodes do not have any 
further dependencies, so the traversal ends there. The Pump [off] node has a control dependency to the 
internal input nodes Pump>turn_off_pump<. This in turn has message dependencies to four corre-
sponding output message nodes in the controller thread, which have each been labelled with a number 
in the table to avoid ambiguity. As shown in the controller thread in Figure 57, the controller sends 
these messages in response to the state of the low water sensor or according to requests made by the 
supervisor or controller. The message is also sent if the CH4 levels are high. The dependency chains 
starting at each Controller <turn_off_pump> node can be seen in the table. The first turn_off_pump 
node leads to nodes in the low water sensor and environment threads. The other two turn_off_pump 
nodes have dependencies to nodes in the supervisor and operator threads. (The dependencies of the 
supervisor and operator nodes have not been shown in the table).  
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    The final slice set contains most nodes in the pump, supervisor, operator, low water sensor, high 
water sensor, environment_CH4 and controller threads. In the controller thread, the main operation of 
the controller is included in the slice set, as well as the threads responsible for monitoring the states of 
the CH4, low water and high water sensors and the pump. None of the nodes in the personnel, 
env_airflow, env_CO, airflow sensor and CO sensor threads are in the slice set. This is intuitively 
correct, as there is no interaction from these components that causes the pump to turn on or off. 
 

Node Dependent on Dependency 

Environment [CH4 := high] Environment >> CH4 high << cd 

Environment [CH4 := normal] Environment >> CH4 normal << cd 

Pump [off] Pump > turn_off_pump < cd 

Pump > turn_off_pump < Controller < turn_off_pump > 1 md 

 Controller < turn_off_pump > 2 md 

 Controller < turn_off_pump > 3 md 

 Controller < turn_off_pump > 4 md 

Controller < turn_off_pump > 1 Controller ???LW sensor=low??? cd 

Controller ???LW sensor=low??? Controller [LW sensor:=low] id 

Controller [LW sensor:=low] Controller > water_detected_low< cd 

Controller > water_detected_low< LW Sensor < water_detected_low > md 

LW Sensor <water_detected_low > LW Sensor > water_low < cd 

LW Sensor > water_low < LW Sensor > water_not_low < td 

 Environment < water_low > md 

Environment < water_low > Environment >> water below limits << cd 

LW Sensor > water_not_low < Environment < water_not_low > md 

Environment < water_not_low > Environment >>water within limits << cd 

Controller < turn_off_pump > 2 Controller > supervisor_off_request < cd 

Controller > supervisor_off_request < Supervisor <supervisor_off_request > md 

Controller < turn_off_pump > 3 Controller ???LW sensor=not_low??? cd 

 Controller ???LW sensor=not_high??? cd 

 Controller > operator_off_request < cd 

Controller > operator_off_request < Operator < operator_off_request > md 

 
Table 2. Some of the Dependencies Relevant for Th1 of the Mine pump 

 
 
    Next, the reversions and reference nodes must be added to the slice if necessary. If all of the rever-
sions and reference nodes were added back to the slice, the final slice would contain the same number 
of interleaving threads as the original model. Even the threads which do not contain any relevant 
nodes, such as the airflow sensor thread, would have to remain in the slice due to their reversions.      
    Further reductions can be obtained using the approach presented in Section 3.4.3 for reducing the 
number of reversions and reference nodes. Using this approach, several reversions and reference nod-
es can be removed from the mine pump slice. All of these are nodes causing divergence, due to infi-
nitely reverting inside unnecessary threads. All of these threads start after the same node, the root 
node Mine pump>>Ready<<. None of these diverging reversions and reference nodes have any con-
trol dependencies to nodes already in the slice. Thus, they can all execute in the same traces and only 
one of them is necessary. In this case, a reversion in the personnel thread has been chosen as the one 
to remain in the slice.  
    Similarly, there are sub-threads of the controller that are not necessary in the slice; in particular the 
sub-threads responsible for monitoring the CO sensor and airflow sensor. The reversions in these 
threads are all descendents of the node Controller?CH4=normal?. When compared to each other, it is 
found that only one of them is needed in the slice to represent the several equivalent divergent traces. 
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The final result is that only two threads which contain entirely stuttering behaviour must remain in the 
slice. This is significantly less than if all stuttering threads had remained. 
    The next stage is to translate the final slice into the SAL input language for model checking. The 
translation process includes the option of specifying the type of message passing used. In this case, 
non-buffered message passing was required, in order to prevent miscommunication caused by mes-
sages arriving too long after the corresponding state change occurred. Additionally, prioritisation was 
applied to the SAL model, in order to ensure that internal messages will be immediately received if 
the receiver is ready. To achieve this, internal messages are given the highest priority, followed by all 
other nodes except external inputs and finally external inputs are given the lowest priority. This effec-
tively prevents spurious counterexamples in which the system responds to external input messages 
faster than its internal state realisations occur. The same approach was used in (Grunske, et al., 2011). 
    Table 3 compares the final slice for Th1 with the original model. The number of transitions is 
equivalent to the number of nodes in the control flow graph, counting each atomic block as a single 
transition. The number of PC’s (program counters) reflects the amount of branching in the tree, since a 
new program counter is created for each alternative or concurrent branch. The number of threads 
shows the number of concurrent threads. All three of these measurements were reduced in the slice, 
although not by large amounts. Despite this, the time taken to verify the theorem was significantly 
reduced. Both models were verified using the SAL symbolic model checker, running on an AMD 
Opteron 6174 processor at 2.2 GHz. (The processor was part of a 48-core cluster, but only one proces-
sor was allocated to this process). To verify the theorem on the original model, the model checker did 
not provide a result in over 24 hours, at which point it was terminated manually. For the slice, the 
model checker was able to provide a response in just 1.5 hrs. The model checker found the property to 
be invalid but was unable to find the counterexample. Nevertheless, it is still an improvement over the 
original model, for which no result was given at all within 24 hours. 
 
 

 

No. of  

Transitions No. of PC's No. of Threads Verification Time 

Original 124 70 56 > 24 hrs 

Slice 102 59 43 Approx.* 1.5 hrs 

 
* The model checker did not provide the verification time statistics in this case, so the time was noted approxi-
mately. 

Table 3. Original Model vs. Slice for Th1 of the Mine Pump 
 
 
Theorems 1 and 2 
    The next two theorems are both very similar. The slicing criterion for Th2 is {Environment_airflow, 
Personnel} and the criterion for Th3 is {Environment_CO, Personnel}. The criterion nodes for Th2 
are: Environment[airflow := low], Environment[airflow := normal], Personnel[in mineshaft] and Pers-

onnel[not in mineshaft]. Similarly, the criterion nodes for Th3 are: Environment[CO := high], Envi-

ronment[CO := normal], Personnel[in mineshaft] and Personnel[not in mineshaft]. Table 4 gives 
some of the relevant dependencies for Th3. The environment nodes are only dependent on external 
input nodes, as for Th1. The Personnel[not in mineshaft] node has a control dependency to an internal 
input node, which is in turn message dependent on two controller output message nodes, both named 
Controller <evacuate_mineshaft>. One of these output messages is sent in response to the airflow 
being low, while the other is sent in response to the CO level being too high. This is the cause of the 
symmetry of the slices for both Th2 and Th3. Since both theorems have the same personnel nodes in 
their criterion set, the resultant slice sets both contain the nodes given in the table, i.e. nodes from the 
airflow sensor, CO sensor and the environment. The table does not list the dependencies relevant to 
the Personnel[in mineshaft] node, which are nodes from the controller, airflow sensor and CO sensor. 
There are also further dependencies not listed, which are due to termination dependencies from alter-
native branches. 
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    All of the relevant nodes from the controller thread are in the sub-threads which monitor the sen-
sors; the main controller thread is not relevant. This results in significantly smaller slices than the 
original model. For both theorems, the final slice sets do not contain any nodes in the pump, operator, 
supervisor, low water sensor and high water sensor threads. Again, this is intuitively correct, as none 
of these components influence the behaviour of the personnel. 
 
 

Node Dependent on Dependen-

cy 

Environment [CO := high] Environment >> CO high << cd 

Environment [CO := normal] Environment >> CO normal << cd 

Personnel [not in mineshaft] Personnel > evacuate_mineshaft < cd 

Personnel > evacuate_mineshaft < Controller < evacuate_mineshaft > 1 md 

 Controller < evacuate_mineshaft > 2 md 

Controller < evacuate_mineshaft > 1 Controller > low_airflow_detected < cd 

Controller > low_airflow_detected < Airflow Sensor <low_airflow_detected> md 

Airflow Sensor >low_airflow_detected< Airflow Sensor > low_airflow_level < cd 

Airflow Sensor > low_airflow_level < Environment < low_airflow_level > md 

Environment < low_airflow_level > Environment >> airflow low << cd 

Controller < evacuate_mineshaft > 2 Controller > high_CO_detected < cd 

Controller > high _CO_detected < CO Sensor < high _CO_detected > md 

CO Sensor > high _CO_detected < CO Sensor > high _CO_level < cd 

CO Sensor > high _CO_level < Environment < high _CO_level > md 

Environment < high _CO_level > Environment >> CO high << cd 
 

Table 4. Dependencies Relevant for Th3 of the Mine Pump 
 
 
    In the same way as for the first theorem, the number of reversions and reference nodes that remain 
makes a significant different to the size and number of threads in the slice. For theorems 2 and 3 in 
particular, there are many divergent threads which do not need to remain in the slice. Using the same 
approach as before, most of the reversions and reference nodes in these threads can be removed from 
the slice, since they are equivalent to others. As with the first theorem, only one reversion or reference 
node in a divergent thread is needed after Mine pump>>Ready<<. Out of the controller sub-threads 
with divergent behaviour, only one of the reversions or reference nodes in these threads is needed as 
well. The main controller thread can be left out of the slice completely. The following tables show 
statistics about the slices for Th2 and Th3, respectively. 
 

     
No. of  

Transitions No. of PC's No. of Threads 

Verification 

Time 

Original 124 70 56 10.5 hrs 

Slice 41 23 21 3.69 s 

 
Table 5. Original Model vs. Slice for Th2 of the Mine Pump 

 

 

No. of  

Transitions No. of PC's No. of Threads 

Verification 

Time 

Original 124 70 56 > 24 hrs 

Slice 41 23 21 3.42 s 

 
Table 6. Original Model vs. Slice for Th3 of the Mine Pump 
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    As can be seen, both slices contain exactly the same number of transitions, program counters and 
threads. This is due to the symmetry of the tree, in which both the airflow and CO are monitored in 
exactly the same manner, requiring exactly the same number of nodes. The slices were much smaller 
than the original model, with less than half the number of transitions, program counters and threads. 
The verification times for both theorems on the original model were very large. Theorem 2 took 10.5 
hours, while the model checker did not produce a result for Theorem 3 for over 24 hours. In compari-
son, the slices for both cases were extremely fast, both taking less than 4 seconds to be proved. 
    The results of this case study demonstrate that slicing can improve the verification time dramat-
ically. However, it depends on several factors, including the property to be verified and the model. 
The first theorem involved the pump, so the final slice was not as small as for the other two theorems 
and the verification time was not as fast. Nevertheless, even for Theorem 1, the slice enabled a result 
to be obtained for a model which previously could not be verified. 
 
 

6.3         HospHospHospHospital Information System Case Studyital Information System Case Studyital Information System Case Studyital Information System Case Study    
 
    The case study presented in this section is a model of a hospital information system. It describes a 
general information system that could be used for a hospital or health care facility. The requirements 
for it are a simplified version of those given by Zafar (2008), which were in turn based on the case 
study presented by Evered and Bögeholz (2004). The system has a typical database design, where 
information about each of the users is stored and accessed by others. Access control policies dictate 
which users are allowed to access which types of information. The use of Behavior Trees for model-
ling access control policies was proposed by Zafar et al. (2007). 
    The system manages information about each of the residents of the facility. Each resident may be 
associated with a representative who is able to sign documents on behalf of them. Doctors and manag-
ers are also users of the system. Managers may add personal details and previous medical records for 
a resident to the system before the resident is admitted, but are not permitted to add or update medical 
records afterwards. Furthermore, managers may delete a resident’s medical records, but only if a 
certain period of time has elapsed since the resident left the facility. Doctors may add, delete or update 
medical records at any time and assign residents, doctors or managers to the appropriate access control 
lists. The access control lists specify which users have access to each document in the system. The 
documents include the medical records for each resident, the private notes of each doctor and the plan 
of care for each resident. Visiting doctors may be temporarily assigned access to a resident’s medical 
records. 
 
6.3.1 Behavior Tree of the Hospital Information SystemBehavior Tree of the Hospital Information SystemBehavior Tree of the Hospital Information SystemBehavior Tree of the Hospital Information System    
 
    The Behavior Tree used in this section is a modification of the one given by Zafar (2008). Another 
version of this Behavior Tree was used to demonstrate slicing in Yatapanage et al. (2010). However, 
the results obtained using that model differ from the results presented here due to the differences 
between the two models. This version rectifies some minor problems and more accurately reflects the 
requirements of the system.  
    The Behavior Tree uses the notion of sets, to represent the sets of each group of users: managers, 
doctors, residents and representatives and the set of data files and log files. There are four main 
threads in the Behavior Tree, each corresponding to a type of user. An overview of the Behavior Tree 
is given in Figure 59. The full Behavior Tree is too large to be shown here. Each thread uses for-all 
nodes to describe the behaviour of a particular user. For example, the manager thread describes the 
behaviour of each manager. Each thread consists of a set of alternative branches, each of which begin 
with an external input node. The external input nodes represent the action to be performed. For exam-
ple, the manager has a branch with the external input node addPersonalDetails, which describes the 
behaviour of adding the personal details of a resident. Every branch ends with a reversion to the Sys-

tem [... := Ready] node of that thread. 
    Two of the branches of the manager thread are shown in Figure 60. After the system node, there is a 
for-all node, stating that the thread describes the behaviour for all elements, m, from the set of manag-
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ers. In the sub-tree below, every time a node refers to m, it is referring to the current element of the set 
of managers. Below the for-all node, there are two for-one nodes, one which selects a particular resi-
dent from the set of residents and one which selects a particular data file from the set of data files. The 
resident and data file are needed to allow the manager behaviour to be described in terms of a particu-
lar resident and data file. For example, when the manager decides to delete a data file, as shown in the 
figure, it is first checked that the data file belongs to the currently selected resident. The data file can 
only be deleted if its time attribute, representing the time that has elapsed since the resident left, is 
above the pre-defined limit. The other thread shown in the figure describes the manager adding medi-
cal records. The medical records are only added if the data file belongs to the current resident and if 
the data file’s admitted attribute is false, representing that the resident has not yet been admitted to the 
facility. The other manager branches are all similar. 
    The other three threads are all designed in the same style, each with a set of alternative branching 
nodes. The doctor thread is the largest. The doctors are responsible for assigning users to the various 
access control lists. For example, the viewNotesACL attribute is the access control list that specifies 
which users have access to each of the private notes. The doctor may assign a resident to this list, in 
order to allow them to view the notes regarding them. This is shown on the right of Figure 61. The 
nodes shown in the figure are one of the branches of the doctor thread, where Doc is the current doc-
tor, d is a chosen data file and res is a chosen resident. If the data file belongs to the chosen resident 
and the doctor assigned to the data file is the current doctor, then the doctor is allowed to assign the 
resident to the access control list. This is accomplished by updating the list to contain the resident. The 
doctor thread also describes the other functions of doctors, such as adding medical records and adding 
visiting doctors to access control lists. 
 

System 

[ Ready ] 

System 

[ Rep := Ready ] 

System 

[ Man := Ready ] 

System 

[ Doc := Ready ] 

System 

[ Res := Ready ] 

Reps 

|| p : Reps 

Representative 

behaviour 

Managers 

|| m : Managers 

Manager 

 behaviour 

Doctors 

|| doc : Doctors 

Doctor 

 behaviour 

Residents 

|| res : Residents 

Resident 

 behaviour 

 
FigureFigureFigureFigure    59595959. Overview of the Hospital Information System Behavior Tree.. Overview of the Hospital Information System Behavior Tree.. Overview of the Hospital Information System Behavior Tree.. Overview of the Hospital Information System Behavior Tree.    
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Figure Figure Figure Figure 60606060. Part of the Manager thread.. Part of the Manager thread.. Part of the Manager thread.. Part of the Manager thread.    

Log 

[] entry : Log 

m 

>> deleteData << 

d 

? deleted =  false ? 

m 

[state := deleting data] 

Further behaviour 
not shown here. 

System 

[ Man := Ready ] 

Managers 

|| m : Managers 

Residents 

[] r : Residents 

Data 

[] d : Data 

d 

? name = r ? 

d 

?time = aboveLimit?  

d 

[deleted = true] 

d 

[deleted = false] 

              System             ^ 

[ Man := Ready ] 

 

              System             ^ 

[ Man := Ready ] 

 

m 

>>addMedicalRecords<< 

 

m 

[state := adding med rec] 

d 

? name = r ? 

 

d 

? admitted = false ? 

 

d 

[medRecords:= added] 

              System             ^ 

[ Man := Ready ] 

 

d 

?time = belowLimit?  

m 

[ state := finishedAdding ] 
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    The resident thread allows the residents to view the various data files associated with them, if they 
are permitted to do so according to the access control lists. A branch of the resident thread is shown on 
the left of Figure 61, where Res is the current resident and d is a chosen data file. When the resident 
requests to view a data file’s private notes, it is first checked whether the data file belongs to the resi-
dent and whether the resident is a member of the access control list. 
    The thread for the representatives is the smallest thread in the Behavior Tree. The representatives 
are able to sign agreements on behalf of the patient and view their care plan.  
 

 
Figure Figure Figure Figure 61616161. Part of the Resident and Doctor threads.. Part of the Resident and Doctor threads.. Part of the Resident and Doctor threads.. Part of the Resident and Doctor threads.    

 
    Unlike the previous case study, the components of the system do not communicate using messages. 
The users each access the central data files according to their own access control privileges. This style 
would be the typical design for any similar database system.   
   
6.3.2 Slicing and Verification of the Hospital InforSlicing and Verification of the Hospital InforSlicing and Verification of the Hospital InforSlicing and Verification of the Hospital Information Systemmation Systemmation Systemmation System    
 
    There are a number of privacy properties which must be satisfied in this system. In this section, 
three such properties will be investigated: 

Th1. ∀m ∈ Managers, d ∈ Data, G (m.state = deletingData and d.deleted = true ⇒ 

d.leaveDate = greaterThanLimit) 

 
For a given manager and a given data file, if the manager is deleting data and the data is 
deleted, the data file’s leave date must be greater than the limit. 

 

Th2. ∀m ∈ Managers, d ∈ Data, G (m.state = addingMedicalRecords and d.medicalRecords 

= added ⇒ d.admitted = false) 

    
For a given manager and a given data file, if the manager is adding medical records and 

the data file’s medical records have been added, the data file’s admitted attribute must be 
false. 

 

Res 

>> viewPrivateNotes << 

d 

? name = res ? 

Res 

[state = requestingNotes] 

d 

? Res : viewNotesACL ? 

Res 

[state = viewed notes] 

Doc 

>> assignResToViewN << 

d 

? name = res ? 

d 

[viewNotesACL := 

viewNotesACL + {res} ] 

d 

? assignedDoctor = Doc ? 
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Th3. ∀r ∈ Residents, d ∈ Data, G (r.state = viewingPrivateNotes and d.privateNotes = viewed 

⇒ r ∈ d.viewNotesACL) 

    
For a given resident and a given data file, if the resident is viewing private notes and the 

data file’s private notes are being viewed, the resident must be a member of the data 
file’s viewNotes access control list. 

 
    The first theorem describes the requirement that a manager cannot delete a data file until a certain 
period of time has elapsed since the resident associated with the data file has left the facility. Instead 
of using specific number values for this purpose, two abstract states have been used: lessThanLimit 
and greaterThanLimit. The property therefore holds if the leaveDate attribute of the data file is in the 
state greaterThanLimit.  
    The second theorem ensures that a manager cannot add medical records unless the resident has not 
yet been admitted to the facility, given by the admitted attribute of the data file. 
    The third theorem utilises an access control list, viewNotesACL, which is an attribute of a data file 
that specifies the set of users who are permitted to view the private notes in the data file. The property 
states that a resident must be a member of the viewNotesACL if they are viewing the private notes. 
    The slicing tool in Integrare (see Section 6.1) was used to create the slice set and re-form it into a 
syntactically correct Behavior Tree. However, the removal of unnecessary reversions was completed 
manually as the slicing tool did not have this feature available at the time. 
    Slicing of the Behavior Tree begins with the construction of the dependency graph. Each operation 
of the system is based on user requests, specified using external input messages. Due to this, most 
nodes in the tree are control dependent on external input messages. Additionally, some functions are 
governed by further conditions. For example, many of the operations are not performed unless the 
given data file belongs to the given resident, specified using the selection d?name = res?, where d is a 
chosen data file and Res is a chosen resident. These selection nodes are data or interference-dependent 
on the d[name := res] node in the manager thread. This node represents the assignment of a name to a 
data file by the manager. Several other interference dependencies exist between selection nodes and 
state realisations. This includes nodes which query whether a given user belongs to a certain access 
control list. Such nodes are interference dependent on nodes that update the access control lists using 
set addition.  
    There are no message or synchronisation dependencies in the Behavior Tree. Furthermore, despite 
there being many reversions, there are no termination dependencies caused by reversions. This is 
because the reversions are all situated at the ends of branches of alternative branching groups. Each 
reversion only reverts within a single thread, so no threads are terminated. The only termination 
dependencies are caused by the alternative branches themselves. 
 
Theorem 1 
    The next stage of slicing is to perform backwards traversals of the dependency graph starting at the 
criterion nodes. For the first theorem, the criterion is: ∀m ∈ Managers and d ∈ Data,{m.state, 
d.deleted, d.leaveDate},. The criterion nodes are then: d [deleted := true], d [deleted := false], m 

[state := deletingData], m [state := addingMedRec] and m [state := finishedAdding]. Table 7 lists the 
dependencies that are reached starting at the criterion nodes. The criterion nodes are italicised in the 
table. All of the manager state realisations only have control dependencies to external input nodes. 
The d [deleted := true] node is control-dependent on d ?time = aboveLimit?. This node has two de-
pendencies: a control dependency to d ?name = r? and a termination dependency to d ?time = below-

Limit?, since it is the root of an alternative branch. The d ?name = r? node leads to a chain of control 
dependencies and also to nodes in another branch of the manager thread, such as d [new := false]. The 
d [deleted := false] node is very similar. It is control-dependent on d ?time = belowLimit?. This leads 
to the same chain of control dependencies. Finally, the external input nodes are termination-
dependent on all the other external input nodes in the manager thread, as they are all linked by an 
alternative branching point. The final slice set contains very few nodes and all belong to the manager 
thread. 
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Node Dependent on Dependency 

m [state := addingMedRec] m >>addMedicalRecords<< cd 

d [deleted := true] d ? time = aboveLimit ? cd 

d ? time = aboveLimit ? d ? name = r ? cd 

 d ? time = belowLimit ? td 

d ? name = r ? d ? deleted = false ? cd 

 d [ name := r ] dd 

d ? deleted = false ? m >> deleteData << cd 

d [ name := r ] d ? new = true ? cd 

d ? new = true ? d [ new := false ] dd 

d [ new := false ] m >> addPersonalDetails << cd 

d [deleted := false] d ? time = belowLimit ? cd 

d ? time = belowLimit ? d ? name = r ? cd 

 d ? time = aboveLimit ? td 

m [state := deletingData] m >> deleteData << cd 

m [state := finishedAdding] m >> addMedicalRecords << cd 

m >> addMedicalRecords << m >> updateCarePlan << td 

 m >> viewCarePlan << td 

 m >> viewPersonalDetails << td 

 m >> addPersonalDetails << td 

 m >> assignDoctor << td 

 m >> deleteData << td 

 
Table 7. Dependencies Relevant for Th1 of the HIS 

 
    Due to this, the entire doctor, resident and representative threads are divergent. As with the previ-
ous case study, when the reversions are added back to the slice, it is necessary to include some of the 
ones in these threads in order to preserve divergent traces. In this Behavior Tree, there are no refer-
ence nodes. Using the approach in Section 3.4.3, the number of reversions can be reduced as follows. 
In the doctor thread, there is a reversion at the end of each alternative branch, each of which revert to 
the root node of the doctor thread. Each reversion is transitively control-dependent on a number of 
selections, mostly involving queries on the access control lists. According to the technique given in 
Section 3.4.3, the only controlling nodes to consider are those which have dependencies to nodes in 
the slice set. Fortunately, none of the selections have dependencies to nodes in the slice set, except  
the selection d?name = res?, which occurs in every branch. For the reversions to be considered 
equivalent, they must all have a control dependency to a matching d?name = res? node. In this case, 
every reversion does have such a dependency. The reversions are also transitively control-dependent 
on  external input nodes. To be considered equivalent, they must all have a dependency to an external 
input node. Again, this is satisfied. Therefore, only one of the reversions is necessary in the slice. 
    Using a similar line of reasoning, there is no need to include any reversions from the resident 
thread, as they are all equivalent to the reversions in the doctor thread. The reversions in the resident 
thread all revert to the root of the resident thread. Therefore, they have a different target node than the 
reversions in the doctor thread. However, both sets of reversions produce divergent traces. That is, 
neither target is an ancestor of a node in the slice set. For that reason, the targets can be considered as 
equivalent to each other, so the reversions in both threads are equivalent. This demonstrates that the 
approach for reducing reversions is well-suited for systems containing several similar branches of 
behaviour.  
    The reversions in the representative thread are required to be included in the slice, because they 
have control dependencies to nodes which are dependent on nodes in the slice set. As a result, these 
two reversions are included into the slice. 
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    The final slice contains only nodes from the manager and representative threads and one branch 
from the doctor thread. The number of transitions and number of program counters (which indicates 
the number of branches) are significantly less than the original model, as shown in the table below. 
Each set in the Behavior Tree can be initialised to any value. The table lists the number of transitions 
and program counters for the model and slice when the sets only contain one user each.   
 

 

No. of 

Transitions No. of PC's 

Original 122 37 

Slice 42 14 

    
Table 8. Original Model vs. Slice for Th1 of the HIS 

 
    Various combinations of sets were investigated, to determine the impact slicing had on each type of 
user. Initially, all sets contained only one user each. In the subsequent experiments, one set contained 
two users, while the others still contained only one. In the 6th to 8th experiments, two of the sets con-
tained two users each, while the other sets contained one each. Finally, in the last experiment, all sets 
contained two users each. The verification times for these experiments are given in Table 9. The 
original model was not verifiable. Even using only one user per set, the model checker was not able to 
provide a result for Theorem 1 in 24 hours, at which point it was terminated manually. In comparison, 
model checking Theorem 1 on the slice was accomplished extremely fast, taking less than two se-
conds. Increasing the size of the sets did not significantly increase the verification time. The set which 
had the greatest influence on verification time was the manager set. When the manager set was lim-
ited to one user, the verification time remained under 10 seconds. This was regardless of the sizes of 
the other sets, as demonstrated by Exp. 7, in which the doctor and resident sets were increased to two 
users each while the manager set contained only one user. With two managers, the time increased to 
one minute. Using two doctors with two managers did not have any impact. This is consistent with 
the structure of the slice, since the doctor thread in the slice contains only one branch and would 
therefore not significantly impact on the verification time. Most of the nodes in the slice are in the 
manager thread, so increasing the number of managers had the greatest impact. Two managers and 
two residents took nearly 8 minutes and two users in each set took approximately one hour. This 
demonstrates that the verification time still increases as the number of users in the sets are increased, 
but slicing gives a significant improvement over the original model which could not be verified at all. 
 

Exp. 1 2 3 4 5 

 1 in each 2 Managers, 2 Doctors, 2 Residents 2 Represen. 

 set. 1 all others. 1 all others. 1 all others. 1 all others. 

Original > 24 hrs - - - - 

Slice 1.68s 64.05s 3.94s 6.09s 7.85s 

Exp. 6 7 8 9  

 2 Doctors, 2 Doctors, 2 Managers, 2 in each  

 2 Managers, 2 Residents, 2 Residents, set.  

 1 all others. 1 all others. 1 all others.   

Original - - - -  

Slice 56.62s 9.11s 7.95 mins 64.75 mins  

 
Table 9. Verification Times for Th1. 

 
Theorem 2 
    The criterion for Theorem 2 is: ∀m ∈ Managers and d ∈ Data, {m.state, d.admitted, d.medicalRec-
ords}. Unlike the previous theorem, there are criterion nodes from each of the threads. In the manager 
thread, there are nodes that modify the state of the manager and the medicalRecords attribute of data: 
m[state := deletingData], m[state := addingMedRec], m[state := finishedAdding] and d[medical-

Records := added].  In the doctor thread, there are nodes modifying the medicalRecords attribute: 
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d[medicalRecords := added] and d[medicalRecords := viewed]. Finally, there are the nodes d[med-

icalRecords := viewed] in the resident thread and Data [admitted := true] in the representative thread. 
Note that a corresponding initialisation text file, as mentioned in Section 2.3.3, sets the admitted at-
tribute to false and the medicalRecords attribute to notAdded initially, for each d ∈ Data. These initial 
values are therefore used in the slice as well, as they correspond to the initialisation section of the 
underlying transition system.  
    The backwards traversals of the dependency graph starting at each of the manager states collects the 
same nodes as for the previous theorem, i.e. some external input nodes and selections. Some of the 
relevant dependencies are given in Table 10. 
 
 
 

Node Dependent on Dependen-

cy 

m [state := deletingData] m >> deleteData << cd 

m [state := addingMedRec] m >>addMedicalRecords<< cd 

d [medicalRecords := added] (Manager thread) d ? name = r ? cd 

d ? name = r ? d ? deleted = false ? cd 

 d [ name := r ] dd 

d ? deleted = false ? m >> deleteData << cd 

d [ name := r ] d ? new = true ? cd 

d ? new = true ? d [ new := false ] dd 

d [ new := false ] m >> addPersonalDetails << cd 

d [admitted := true] d ? admitted = false ? cd 

d ? admitted = false ? d ? representative = person ? cd 

d ? representative = person ? d [ representative := person ] id 

d [medicalRecords := viewed] (Doctor thread) d ? res : viewMedicalACL ? cd 

d ? res : viewMedicalACL ? d ? doc : viewMedicalACL ? cd 

d ? doc : viewMedicalACL ? d ? name = res ? cd 

d ? name = res ? d [ name := r ] id 
 

Table 10. Dependencies Relevant for Th2 of the HIS 
 
    The d[medicalRecords := added] node in the manager thread is control-dependent on d?name = r?, 
which results in the same nodes from the manager thread being included into the slice as for the first 
theorem. The d[admitted := true] node in the representative thread is transitively control-dependent 
on d [representative := person], which is in turn interference dependent on the corresponding state 
realisation in the manager thread. The nodes in the doctor and resident threads have dependencies to 
the access control lists viewMedicalACL and addMedicalACL, which are both updated by nodes in the 
doctor thread. For  this reason, a large portion of the doctor thread must be included into the slice. 
Only a few reversions could be eliminated, as in this case most of the reversions do not produce di-
vergent behaviour. The final slice is therefore almost as large as the original model, as shown by 
Table 11. 

 

No. of 

Transitions No. of PC's 

Original 122 37 

Slice 116 27 

   
Table 11. Original Model vs. Slice for Th2 of the HIS 

 
    As was done for the first theorem, various combinations of the sets were used, starting with one 
user in each set. The verification times for each experiment are given in Table 12. Using the original 
model with one user per set, the model checker was unable to provide a result in 24 hours. The slice 
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was extremely fast in comparison. It was able to be verified in 68 seconds using one user per set. The 
largest part of the slice is the doctor thread, so increasing the number of doctors had the greatest im-
pact on verification time. When the doctor set was limited to one user, using two representatives 
increased the verification time to five minutes (Exp. 5), while using either two managers or two resi-
dents increased the time to seventeen minutes (Exp. 2 and 4). Increasing the doctor set to two users 
caused a larger increase in verification time, to 1.5 hours (Exp. 3). The final experiment combined two 
doctors with two managers. This increased the time to almost 8 hours. The largest parts of the slice are 
the doctor and manager threads, so this is the largest combination of two sets with two users each. 
Other combinations were not attempted as they would not provide any further insights. Since all other 
combinations of two sets with two users result in slices that are smaller than the slice in Exp. 6, they 
would be verified in faster time. 
 

Exp. 1 2 3 4 5 

 1 in each 2 Managers, 2 Doctors, 2 Residents 2 Represen. 

 set. 1 all others. 1 all others. 1 all others. 1 all others. 

Original > 24 hrs - - - - 

Slice 68.53s 17.22 mins 1hr 29.9mins 17.41 mins 5.21 mins 

Exp. 6     

 2 Doctors,     

 2 Managers,     

 1 all others.     

Original -     

Slice 7hrs 52mins     

Table 12. Verification Times for Th2. 
    
    For Theorem 3, the criterion is ∀r ∈ Residents and d ∈ Data, {r.state, d.privateNotes, d.view-
NotesACL}. There are criterion nodes in the resident and doctor threads. In the resident thread, the 
nodes r[state := viewingPrivateNotes] and d[privateNotes := viewed] both modify variables in the 
criterion. In the doctor thread, the criterion nodes are: d[privateNotes := viewed], d[privateNotes := 

added], d[viewNotesACL := viewNotesACL + {res}] and d[viewNotesACL := viewNotesACL + {doc}]. 
The latter two are nodes which update the viewNotesACL list. As was done for the previous theorem, 
the initial values of the Resident’s state attribute and Data’s privateNotes and viewNotesACL attrib-
utes, given by the initialisation text file, will also remain in the slice. Some of the relevant dependen-
cies are given in Table 13. 
    The node r[state := viewingPrivateNotes] only has a control dependency to an external input node. 
All the nodes involving the privateNotes attribute of Data have control dependencies to selections 
querying the viewNotesACL and addNotesACL access control lists. These lead to interference dep-
endencies to state realisations involving these access control lists. These are all control-dependent on  
external input nodes and selections of the form d?assignedDoctor = doc?, which are in turn interfer-
ence-dependent on the d[assignedDoctor := doc] node in the manager thread. Every criterion node is 
also transitively control-dependent on selections of the form d?name = r?, which are also interference-
dependent on a node in the manager thread. The final slice contains nodes from all four threads. How-
ever, the doctor thread is not as large as for Theorem 2. By using the approach in Section 3.4.3, sever-
al reversions can be removed, resulting in fewer branches in the doctor thread. The size of the slice 
compared to the original model is given in Table 14. 
    The verification times for Theorem 3 are given in Table 15. Four combinations were attempted. The 
original model could not be verified in 24 hours, even with only one user per set. The slice took only 
48 seconds for this case. When the number of managers was increased to two, the verification time 
increased to 2 hours. Increasing the number of doctors to two each resulted in a verification times of 
50 mins. With two representatives but one of all other types of users, the verification time was 16 
minutes. This is consistent with the layout of the slice, since the representative thread contains the 
fewest number of nodes and branches. 
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Node Dependent on Depend-

ency 

r [state := viewingPrivateNotes] m >> viewPrivateNotes << cd 

d [privateNotes := viewed] (Resident thread) d ? r : viewNotesACL ? cd 

d ? r : viewNotesACL ? d ? name = r ? cd 

 d [viewNotesACL := viewNotesACL 

+ {r}] 

id 

 d [viewNotesACL := viewNotesACL 

+ {doc}] 

id 

d ? name = r ? m >> viewPrivateNotes << cd 

d [privateNotes := viewed] (Doctor thread) d ? r : viewNotesACL ? (Doc thread) cd 

d ? r : viewNotesACL ? (Doctor thread) d ? doc : viewNotesACL ?  cd 

d ? doc : viewNotesACL ? d ? name = r ?  (2) cd 

 d [viewNotesACL := viewNotesACL 

+ {r}] 

dd 

 d [viewNotesACL := viewNotesACL 

+ {doc}] 

dd 

d ? name = r ?  (2) d >> viewPrivateNotes << cd 

d [viewNotesACL := viewNotesACL + {r}] d?assignedDoctor = doc? cd 

d?assignedDoctor = doc? d ? name = r ?  (3) cd 

d ? name = r ?  (3) d >> assignResToViewNotesACL << cd 

d [viewNotesACL := viewNotesACL + {doc}] d?assignedDoctor = doc? (2) cd 

d?assignedDoctor = doc? (2) d ? name = r ?  (4) cd 

d ? name = r ?  (4) d >> assignDocToViewNotesACL << cd 

 
Table 13. Some of the Dependencies Relevant for Th3 of the HIS 

 
 

 

No. of 

Transitions No. of PC's 

Original 122 37 

Slice 114 26 

    
Table 14. Original Model vs. Slice for Th3 of the HIS 

 
 
   
 

Exp. 1 2 3 4 

 1 in each 2 Managers, 2 Doctors, 2 Represen. 

 set. 1 all others. 1 all others. 1 all others. 

Original > 24 hrs - - - 

Slice 47.74s 2hrs 16.4mins 50.37 mins 15.8 mins 

  
Table 15. Verification Times for Th3. 

 
    For all three theorems, the original model could not be verified even using only one user per set. 
The slices with one user per set produced results very quickly. As the sets were increased, the verifica-
tion times increased, which demonstrates that slicing does not prevent the state explosion problem. 
However, it increases the range of cases which can be model checked. Slicing allowed results to be 
obtained for sets containing one or two users. For most systems, this would be sufficient to identify 
any problems with the design.  
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    The two case studies presented in this chapter demonstrate the benefits of slicing Behavior Trees 
prior to model checking. As was seen by the two case studies, the reductions obtained are dependent 
on the model and the property. In some cases greater reductions in verification time are produced than 
for others. Despite this, significant reductions were obtained for all cases and slicing enabled models 
which were not previously verifiable to be model checked. The next chapter concludes the thesis. 
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7.1     ContributionsContributionsContributionsContributions    
 
    The primary contribution of this thesis is a technique for reducing Behavior Tree specifications 
using slicing) in order to alleviate the state explosion problem when model checking large systems. 
This slicing technique has been shown to preserve formulas expressed in the logic CTL*

-X, by relating 
the slice, given by a function sliceφ, to the original model using branching bisimulation with explicit 
divergence. By evaluation on case studies, the slicing technique has been demonstrated to have the 
potential to reduce the verification time of large models dramatically, although the extent of reduction 
is dependent on several factors, such as the formula to be verified and the level of dependencies be-
tween the nodes of the Behavior Tree. 
    In addition, an optimisation technique has been presented for reducing slices further by removing 
infeasible paths. The approach has been demonstrated to remove more nodes than other previous 
related approaches. This technique, given by the function slice_infφ, has also been shown to preserve 
CTL*

-X formulas. 
    The final contribution is a novel method for producing slices that can preserve full CTL* formulas, 
including formulas containing the X operator. No other slicing technique in the literature is able to 
handle such formulas. This technique, given by the function slice_nextφ, has been shown to be correct 
by the use of a new type of branching bisimulation, termed next-preserving branching bisimulation, 
which has been shown to preserve full CTL*. 
    For a transition system B corresponding to a BT control flow graph and a formula φ, the slicing 
functions can be composed in the following ways, where ◦ denotes the composition operator: 

slice_infφ ◦ sliceφ(B), 
slice_nextφ ◦ sliceφ(B) or 
slice_nextφ ◦ slice_infφ ◦ sliceφ(B). 

    This allows the user to select the most suitable techniques for their purpose. For example, a user 
may not require the use of the X operator and therefore does not need to use the slice_nextφ function, 
or a user may feel that the slice is small enough without the need for removing infeasible paths. 
    The slicing techniques presented in this thesis are an essential addition to the Behavior Engineering 
methodology, as they allow the verification of large Behavior Trees to be possible. As well as this, the 
results of this thesis are of benefit to the formal methods community in general. Concepts such as the 
infeasible path reduction and next-preserving slicing can be applied when slicing any  programming 
or specification language. Additionally, some of the methods for producing Behavior Tree slices can 
be utilised for other similar languages. Furthermore, the concept of next-preserving branching bisimu-
lation and the results about property preservation of full CTL* that are presented in this thesis are a 
valuable theoretical contribution in general. 
 

7.2     Future WorkFuture WorkFuture WorkFuture Work    
 
    The directions for future work include further evaluation of the slicing techniques on case studies, 
extending the tool support and exploration of further theoretical aspects of the approaches. 
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    Case studies are necessary to evaluate the infeasible path approach presented in Chapter 4, in order 
to investigate how useful the reductions are in practice. Similarly, the technique given in Chapter 5  
for preserving properties containing the X operator needs to be evaluated on case studies. This is espe-
cially important in order to determine whether the slices remain small enough to be beneficial even 
when the extra stuttering nodes are added back to the slice.  
    Evaluation of these techniques on case studies is only possible if the slicing tool can perform all of 
the necessary features. Therefore, another area of future work is to implement the algorithms of  
Chapters 4 and 5. Furthermore, it is planned that the slicing tool will be linked with the other Behavior 
Tree editor, TextBE (Myers, 2011), which is a freely available tool and is therefore more accessible to 
users than Integrare. Ideally, the slicing tool would display the resulting slice visually to the user and 
provide statistics about its size and structure. Additionally, users may find it useful to view the inter-
mediate control flow graphs and program dependence graphs.  
    Another related avenue for future work is to devise a polynomial time algorithm for the infeasible 
path technique. Preliminary investigations into this suggest that a polynomial algorithm is possible, by 
storing the necessary information in such a way that no node needs to be explored more than once. 
    The technique for adding extra stuttering nodes to preserve properties with the X operator could be 
further optimised by considering the structure of the formula in more detail. There are cases where the 
proposed approach adds more stuttering nodes than is necessary. For example, if the formula does not 
contain the E operator after an X operator, it is not necessary to add stuttering nodes before branching 
locations. Furthermore, an approach could be developed to add certain numbers of stuttering nodes 
before some observable nodes, while adding different numbers before other observable nodes, based 
on the specific atomic propositions mentioned in the formula.  
    Finally, another direction for future research is to investigate other applications where next-pres-
erving branching bisimulation could be useful, i.e. applications which cannot maintain a strong bisim-
ulation but could benefit from the use of the next step operator. 
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