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ABSTRACT 

     

    Cellular automata is a system in which continuous processes are modelled in 

terms of discrete components. Numerical values are used to define the possible 

states for each component. The change of state is governed by a set of rules 

incorporating the states of neighbouring components. Leaf expansion was 

simulated in this way by assigning numerical values to cell properties and 

defining a set of rules. These rules were set to reflect the interactions of 

neighbouring cells.  

    A software package was developed which performs the simulation of leaf 

growth using entered values of cell properties. The software package includes 

provisions for simulating situations such as the effect of an insect attack on a 

leaf.  

    The area expansion rates of known leaves were used to estimate the set of 

rules used in the simulation. The predicted linear expansion rates were found to 

fit closely with the measured expansion rates of the leaves. 
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CHAPTER 1 

INTRODUCTION 

 
    Leaves are valuable organs of plants as they are the main collectors of 

sunlight for use in the photosynthesis process. Leaf growth is therefore an 

important biological process, since the shape and size of a leaf can greatly 

impact the amount of sunlight collected. The growth of leaves can be studied 

experimentally and can also be simulated using computer models. For the 

simulation process, the leaf can be thought of as a collection of small discrete 

sections. Mathematical rules can be devised to model the growth based on 

these discrete sections. Cellular automata is a system which uses this concept 

and can be used to produce a model of leaf growth. Further, the environmental 

effects can also be incorporated into the model, such as the effect of drought 

on the leaf. The goal of this project is to produce a simulation model of leaf 

growth based on cellular automata which can be used in conjunction with 

experimental research.  

    Chapter 2 of this thesis is a review of relevant literature. Chapter 3 

describes the methods used. The results and discussion are presented in 

Chapter 4. Chapter 5 is the conclusions. 
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CHAPTER  2  

REVIEW OF LITERATURE 

2.1 Cellular Automata  

    Cellular automata refers to a mathematical modelling system “in which 

many simple components act together to produce complicated patterns of 

behaviour” (Chen et al. 2002). It was first proposed by J.H. von Neumann and 

Burks (1966).  Since then, cellular automata has had numerous diverse 

applications. Wang and Ruskin (2002) presented a model for traffic flow at a 

single-lane roundabout by using one-dimensional ring cellular automata, and 

even included factors such as the behaviour of drivers. Mansilla and Gutierrez 

(2001) applied cellular automata to the spread of disease and rumours in 

human populations using partial differential equations. Cellular automata have 

been applied to complex biological processes including DNA sequences 

(Chaudhuri et al. 1997). One of the most famous examples of the use of 

cellular automata is Conway’s Game of Life, as described by Gardner (1970), 

used to simulate the behaviour of living organisms. In the Game of Life, a 

lattice simulates the environment of the organisms and discrete sections of the 

lattice known as cells may only have one of two states: living and dead. Cells 

change to the dead state due to either isolation or overcrowding, and cells may 

change to the living state to simulate birth, reflecting the real situation of 

organisms in a community. 

    Cellular automata have also had applications in the modelling of plants. The 

development of branching patterns was simulated using cellular automata by 
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Ulam in 1962 (as reviewed by Mech and Prusinkiewicz 1996). Similarly, a 

cellular automata system was used to simulate vessel morphogenesis of leaves 

(Markus et al. 1999). Due to the spatial nature of cellular automata systems, 

they have been used for the modelling of the spread of plant epidemics and 

other vegetation dynamics (Pons, J. et al. 1998). 

    Cellular automata have been used effectively for the modelling of the 

surface growth of organisms, such as the development of limbs (Wilby and Ede 

1976). Similarly, cellular automata could be an effective method for the 

representation of leaf growth.  

    Cellular automata systems consist of a lattice of discrete areas known as 

cells. The cells each store their state, which changes in discrete time-steps. 

The state of a cell at the next time-step is dependent on its current state and 

the current states of its immediate neighbours. A set of rules are defined which 

determine the conditions upon which the cell will change its state. The states 

of all cells are updated synchronously during each time-step, producing an 

overall change in the lattice. 

    Cellular automata can be classified into three types (Ermentrout and 

Edelstein-Keshet 1993). The first type, eulerian automata, is the classic type 

described above, in which the cells contain states which change according to 

their neighbouring cells. The second type, known as lattice gases, involves 

behaviour similar to gases, in which particles move around the lattice and 

interact according to given rules. The third type, solidification models, is 
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similar to the lattice gas model, with the added restriction that particles may 

enter a “bound” state from which they can not move.  

    It is possible for cellular automata to be modelled in one, two or even three 

dimensions (El Yacoubi and El Jai 2002). For the one-dimensional cellular 

automata, the cells all remain in a row. Interactions occur between a cell and 

the few neighbouring cells in the row. However, in the two-dimensional case, 

the cells are presented in a two-dimensional structure, with each cell 

depending on several neighbours. Some neighbourhood configurations have 

been defined which indicate which neighbours a cell depends on, including the 

Von Neumann, Moore and uniform configurations, as shown in Fig. 2.1. The Von 

Neumann configuration defines the neighbourhood of a cell as the four cells 

located directly above, below and to the left and right of the cell, while the 

Moore configuration defines the neighbourhood as the neighbouring cells in all 

eight directions. The uniform configuration is used for hexagonal lattices, and 

the neighbourhood is defined to be all touching hexagonal cells. 

 

  

 

Fig. 2.1 Main types of two-dimensional neighbourhoods. (Taken from El Yacoubi 

and El Jai 2002) 
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    The shapes of the individual cells can vary depending on the modelling 

requirements, including triangular, square and hexagonal shapes. The set of 

rules which govern the state of each cell, known as the transition function, 

may be deterministic or stochastic (El Yacoubi and El Jai 2002). An example of 

a type of deterministic function is the totalistic function, in which only the sum 

of the state values of the neighbouring cells is considered. Stochastic transition 

functions involve changing the states of each cell based on probabilities with 

the overall direction of growth also controlled by a probabilistic mechanism. 

(Bandini and Pavesi 2002). 

    The transition function is usually identical for each cell in a cellular 

automata structure. However, it is also possible for hybrid structures to be 

implemented, in which different groups of cells operate under different sets of 

rules (Chaudhuri et al. 1997). 

    Although cellular automata systems involve simple structures which only 

interact locally, they can successfully simulate complex systems.  

 

2.2 Leaf Expansion 

    The study of the expansion of leaves began as early as 1727, when Hales 

studied the growth of a fig leaf by measuring the displacement of points 

marked on the leaf (as described by Wolf et al. 1986). Avery (1933) discovered 

that the final shape of a leaf is a result of a differential distribution of growth 

 5



in various sections of the leaf, known as localised growth, and larger growth 

rates in particular directions compared to others, known as polarised growth. 

    The growth of a leaf is the result of cell division and cell expansion. While 

cell division provides the framework for leaves, the many variations in leaf 

shape are due to the magnitude and direction of cell expansion (Tomos 1985). 

Cell expansion is dependent on water absorption and cell wall yielding 

(Cosgrove 1986). Water movement into cells due to osmotic pressure gradients 

increases the pressure inside the cells, known as turgor pressure, which 

provides the force for expansion. This expansion is controlled by cell wall 

yielding properties according to the following equation proposed by Lockhart 

(1965). 

                          r =  m (P-Y)  

where r is the growth rate, m is the elastic properties of the cell wall, P is the 

turgor pressure and Y is the yield threshold above which the growth occurs. 

There have been several applications of cellular automata to the simulation of 

cell division (as reviewed by Martinez 1976). 

    In monocot leaves, cell division and cell expansion are spatially separated, 

simplifying the study of elongation of these leaves (Van Volkenburgh 1999). Cell 

division only occurs at the base of the leaf, at the meristem. Cell expansion 

occurs in the area above the meristem (Schaufele and Schnyder 2000). As more 

cells are produced at the meristem, older cells are moved further away from 

the base. These cells then go through the process of expansion, with an 

increasing cell length as the cells are moved further from the base. Cells reach 
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their maximum length at the end of the expansion zone (Tardieu et al. 1999). 

By the time cells have reached the visible section of grass leaves, both cell 

division and cell expansion have completely ceased (Dale and Milthorpe 1983). 

    The growth of dicot leaves differs significantly from that of monocots. Dicot 

leaves grow bi-directionally, with a significantly longer time of growth than 

monocots (Granier and Tardieu 1998). Cell division and cell expansion occur in 

all areas of the leaf and may overlap spatially and temporally (Van Volkenburgh 

1999). However, the rates of division and expansion are not uniform over the 

leaf, with a higher relative expansion rate in the regions adjacent to the major 

veins compared to peripheral regions (Dale and Milthorpe 1983). The study of 

the growth of Xanthium strumarium leaves, performed by Maksymowych 

(1973), which is considered one of the key studies of the spatial distribution of 

dicot leaf growth, also confirmed the above localised cell division/expansion 

patterns. 

    Tardieu et al. (1999) found that the growth of a dicot leaf can be classified 

into three stages of development. In the first stage, the relative expansion rate 

and the relative cell division rate are constant and at their maximum values. 

There is an exponential increase in the total area of the leaf and in the number 

of epidermal cells. The next stage is characterised by a decrease in relative 

cell division rate, while the relative expansion rate remains constant. During 

the final stage, cell division ceases and the relative expansion rate decreases.  

    The decrease in expansion and division rates begins first in the tip of the 

leaf, and then progressively towards the base (Dale and Milthorpe 1983 and 
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Tardieu et al. 1999). As a result of this, the area of the base is significantly 

larger than that of the tip. 

    Arkebauer and Norman (1995 a,b,c) proposed a model for predicting the 

growth of monocot leaves. Since the number of cells in a leaf can be extremely 

large, cells were grouped into classes of similar volume. All the cells in a 

certain class were assumed to expand at the same rate. Arkebauer and Norman 

then devised several equations for the calculation of the number of cells 

expanding into larger volume classes at each time-step and the number of 

dividing cells. Cell expansion was assumed to be related to the wall 

extensibility and water relations of the cells, while cell division was related to 

the cell temperature and a daughter ratio, defined as the proportion of cells 

remaining after a cell division which are capable of further divisions. The 

model was successful in simulating the expansion of the whole leaf based on 

cell expansion and division and also incorporated the effects of water potential 

inputs and temperature.  

    Environmental conditions can significantly affect the growth of leaves. 

Factors which may influence leaf expansion include the availability of light, 

relative humidity, soil water potential and defoliation (Parrish and Wolf 1983). 

These factors have an impact on leaf expansion by affecting either the wall 

loosening or the water flux into expanding cells, thereby changing the cell 

expansion rate. Cell division and cell expansion have both been shown to be 

affected by water stress (Sivakumar and Shaw 1978). As water deficits 

increase, cell expansion rates progressively decrease, until eventually ceasing 
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completely. Since cellular automata deal with physical problems by using 

discrete sections, it may be an appropriate tool to model the complex 

interactions of cell division and cell expansion. 
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CHAPTER  3 

METHOD 

3.1 Description of Leaf Expansion Model 

3.1.1 Introduction 
 
   Cellular automata represent complex systems in terms of discrete 

components. Since leaf expansion is a continuous process, it must be 

characterised by the behaviour of discrete components, in order to fulfil the 

requirements of a discrete modelling system. This enables the system to be 

simulated using a computer program. 

    A cellular automata system was developed to model the expansion of leaves. 

The lattice of the cellular automata represents the environment in which the 

leaf is growing. A two-dimensional lattice was considered to be appropriate, as 

only the surface leaf expansion was studied. The CA cells are representative of 

the cells of the leaf. In order to simplify the model, cells with similar 

properties were grouped together into a single unit of cells. Each CA cell 

represents one of these units of leaf cells. 

    Cells in a leaf expand in all directions. Due to this behaviour, the Moore 

configuration was considered the most appropriate form of representation of 

the CA neighbourhood (see page 4). The Moore neighbourhood allows cells in all 

eight directions to be influenced by the centre cell. Using this configuration, 

cell expansion can be simulated by considering the effect of an expanding cell 

on the neighbouring cells in all directions.  
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    At any given time, each cell of the cellular automata may either represent a 

portion of the expanding leaf or the surrounding space. Thus, two states are 

possible for each CA cell, either the growing state or the empty state. 

    To determine how the cells of the model change between these states, 

transition rules were devised. The cells of a leaf are influenced by surrounding 

cells through the transfer of water and solutes, resulting in cell expansion. This 

influence is included in the model by the transition function. The state of a CA 

cell changes to the growing state if a neighbouring cell is already in the 

growing state. 

    Dicot leaves grow in all directions and exhibit polarised growth, i.e. 

different rates of growth in each direction, as discovered by Avery (1933). For 

the simulated leaf to exhibit the same behaviour, the transition rules had to be 

modified to allow the rate of growth to be specified in any direction. Each cell 

of the simulation process was given a decimal value. The precision of this 

decimal value can be decided by the required accuracy of the results. If a 

neighbouring cell is found to be in the growing state, the decimal value of the 

current cell increases by a set amount. This amount is dependent on the 

location of the neighbour. When the value of a CA cell has increased above a 

given threshold value, the cell changes to the growing state.  

    By specifying different amounts of increase for CA cell values according to 

the direction of the neighbour, the modelled leaf growth can be made to 

exhibit the same properties of actual leaf growth. Since the threshold growth 

level is a constant, CA cells with growing neighbours in any particular direction 
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will reach the threshold value faster if the amount of increase for that 

direction is larger. This will result in a faster growth rate for the simulated leaf 

in that direction. Using this method, the rates of increase for each direction 

can be chosen to give the desired effect. 

 

This system can be represented mathematically as follows: 
 
Let L represent a lattice of cells. For each cell in L located at position (i,j): 
 
  Let Si,j(t) represent the state of the cell at time t and 
        ni,j(t) represent the numerical value of the cell at time t. 
 
 
  Si,j(t) ε { 0,1 },  where 1 = growing state, 0 = not growing. 
  ni,j(t)  is a decimal number 
 
 
  Initial conditions: Si,j(0) = 0, ni,j(0) = 0  
 
  Transition rules: 

 
 
  Si,j(t + 1)  =       1   if  Si,j(t) = 0 and ni,j(t + 1) > m,  where m is the threshold  

    value. 
  

1   if  Si,j(t) = 1 
 

0 otherwise 
 

 
  ni,j(t + 1)  =       ni,j(t) + adir   if Sx,y(t) = 1 
    
                          ni,j(t)   if Sx,y(t) = 0 for all neighbours or Si,j(t) = 1 
 
where the cell at position (x,y) is a neighbour of the cell at position (i,j) and 
adir is a value depending on the direction of cell (x,y). 
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    During the course of growth of an actual leaf, the growth rates change with 

time. Leaf growth slows and eventually ceases when the leaf reaches a certain 

age. By using dynamic transition rules, this behaviour can be specified for the 

model. When a certain number of steps have been performed, signifying a 

length of time, the rates of increase for the cell values are changed, to reflect 

the associated change in growth rate of the actual leaf. 

 

3.1.2 Complex leaf shapes 

    The cellular automata model described can be used to simulate simple 

shaped leaves with differences in dimensions, such as broader leaves. However, 

in nature, there is a large diversity of leaf shapes. Modelling leaves with more 

complex shapes requires changes to the transition rules.       

    The rates of growth in each direction will vary depending on the section of 

the leaf. Therefore, in order to simulate the growth of leaves with complex 

shapes, a hybrid cellular automata system can be used, where different sets of 

transition rules are applied to each section of the leaf.      

    The rules must be changed to include an additional state value that defines 

which section of the leaf each CA cell belongs to. This value is set to 0 for cells 

which are not in the growing state. If a neighbouring cell is in the growing 

state, the cell is assigned to the same leaf section as the neighbour, thus 

allowing it to follow the rules for that particular section.  

    Using these modifications to the original cellular automata system, the 

growth of a large variety of leaves was simulated. 
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3.2 Software developed 

    The discrete nature of cellular automata models, as well as the large 

number of calculations which must be performed for a lattice of appropriate 

size, makes cellular automata an ideal candidate for computer simulations. The 

use of a computer program to perform the simulation allows large size lattices 

to be considered with minimum additional effort.  

    The cellular automata lattice was represented as a grid of squares, with 

each square representing a single CA cell. The state of these squares is in the 

form of numerical values. Thus, a visual representation can be a useful aid in 

providing such rapidly changing information to the user. Different colours can 

be used to represent the different states of each cell. A software package was 

developed to run the leaf growth simulation, which produces such a graphical 

output. A user friendly menu is provided to enter required parameters. An 

example screenshot of the graphical display is shown in Fig. 3.1. 

                     

surrounding cells 

growing leaf 

Fig. 3.1 Screenshot of output of software package 
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    The values and states of the cells are stored in two-dimensional arrays. At 

each time-step, the new value of each cell is determined by examining the 

states of all neighbouring cells. For cells which lie on the borders of the CA 

lattice, the effect of their missing neighbours are taken into account by 

equating those cells to a non-growing state with a value of 0. 

    The new values for cells are stored in a temporary array while calculations 

are taking place. This ensures that all cells are using the previous states of 

neighbours for calculations, as defined by cellular automata systems, and not 

the new states. After the new values for all the cells have been calculated, 

these values are copied back to the original array.  

    An excerpt of the code for this section follows. The array “cell” stores the 

current values for each cell, the array “temp” temporarily stores the new 

values and the array “isleaf” stores the current state of each cell (1 or 0). The 

function “getNextState” is the function which performs the transition rule 

calculations for each cell and returns the new values.  

 
for(i = 0; i < max; i++){ // for each row 

    for(j = 0; j < max; j++){   // for each column 

       temp[i][j] = getNextState(i,j); // calculate new value and store in  

temp array. 

    } 

 } 

 

  for(i = 0; i < max; i++){ // for each row 

       for(j = 0; j < max; j++){   // for each column 
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 cell[i][j] = temp[i][j]; // update values 

 if(cell[i][j] > threshold){    // if new value is larger than threshold 

   isleaf[i][j] = 1; // change state of cell to growing state 

 } 

        } 

    } 

 

    The new values for each cell are calculated using a separate function, in 

which the transition rules are specified. The function examines the state of 

each neighbour until one is found which is in the growing state. The new value 

for the current cell is then determined by the addition of its previous value and 

the adir value, depending on the direction of the chosen neighbour. The pseudo-

code for the basic transition rules follows. The variables “a1” and “a2” 

represent the adir values for two of the neighbour directions. The new value for 

the cell is returned as the “result” variable. Using this method, rules for any of 

the eight directions can be specified. 

 

if (the cell is not in the growing state){ 

      if (the neighbour in the downwards direction is growing){ 

           result = cell[row][column] + a1;      // increase cell value by a1 

      }else if (the neighbour in the left direction is growing){ 

           result = cell[row][column] + a2;      // increase cell value by a2 

                            … etc. … 

      } 

}else{   // cell is already in the growing state – no change 

     result = 0; 

} 
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    By using a computer program, the output after large numbers of time steps 

can be easily calculated. The program can be used to internally calculate the 

results of intermediate steps and only display the results of steps relevant to 

the user, such as the output after every 20 steps. This simplifies experiments 

involving the CA model and allows users to view the entire process of leaf 

growth in a short period of time. 

    The program options allow the user to specify the transition rule parameters 

or to use established transition functions based on measured data for different 

species. The leaf shape can be modified at any time, allowing different leaf 

varieties to be simulated. Similarly, portions of the leaf can be destroyed, to 

simulate the impact of damage to the leaf due to insect attacks. The user can 

also choose to run a pre-defined simulation of a more complex leaf shape.  

    The program was aimed at producing outputs of linear and area expansion 

rates for variable input conditions. The relative area of the simulated leaf at 

any time is calculated by counting the number of cells that are in the growing 

state. Similarly, the length is a count of the longest column of cells in the 

growing state. These values are displayed to the user as message boxes when 

requested, allowing quantitative predictions of leaf growth to be made using 

the model. Using these outputs, a user can calculate linear and area expansion 

rates of a particular leaf to investigate the mechanisms of such growth 

interactions. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Output of model 

4.1.1 Effect of transition rules 

    The behaviour of the model under variations to the transition rules was 

observed. The step increment amounts of the transition rules were found to 

have a large impact on the resulting simulated leaf shape and rates of growth, 

as was expected. Increasing these parameters led to an increase in the growth 

of the leaf in the corresponding direction.  

    This concept is illustrated by Figs. 4.1, 4.2. Fig. 4.1 shows an example 

output of the model using larger values for the growth rates in the horizontal 

directions, while Fig. 4.2 shows the effect of smaller values in the horizontal 

directions. 

                

Fig. 4.1 Output using large horizontal values Fig. 4.2 Output using small horizontal values 
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    Since the chosen step increment amounts define the produced output, the 

values had to be chosen to correspond with the growth rate distributions of 

actual leaves. For example, if the values are equal for all directions, the 

output eventually becomes square shaped, even if the simulation began with a 

different shape. This can be seen in Fig. 4.3. However, the output in Fig.4.4 

can be produced by specifying greater growth rates in the vertical direction, 

similar to the actual growth distribution of leaves. 

     

Fig. 4.3  Output using equal values for      Fig.4.4 Output using larger values for 

                    all directions             vertical direction  

 

    This effect enables the model to be used to simulate different species with 

variations in leaf shape, by changing the transition rule parameters. Although 

dicot leaves were the primary target of the simulations, the model could also 

be used to simulate the growth of monocot leaves, by restricting the transition 

rules to growth in only one direction. 
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4.1.2 Initial configuration of model 

    The initial configuration of the model had an impact on the output. Starting 

the simulation with a single cell in the growing state occasionally led to shapes 

which were not representative of actual leaf shapes, such as rectangular blocks 

of cells. Since the transition rules do not specify the required shape of the leaf, 

it is possible for these other shapes to occur. This situation was resolved by 

only considering the expansion of a leaf after the initial shape has already been 

established. By allowing the model to expand from an initial young leaf shape, 

the result of the simulation is more accurate, as the final leaf shape produced 

is similar to shapes found in nature.   

 

4.2 Predictions of linear expansion rate 

    To evaluate the effectiveness of the cellular automata model in simulating 

the growth of leaves, this software was used to predict the corresponding 

linear expansion rates for known area expansion rates.  

    Area expansion rates over time for three plant species: White clover, 

tobacco and pea, were obtained from Denne (1966), Hannam (1968) and 

Lecoeur et al. (1995), respectively. This data was used to obtain the step 

increment amounts (adir) of the transition rules. The parameters were adjusted 

until the simulated area expansion rate corresponded with the measured area 

expansion rate as closely as possible. If the area expansion rates obtained 

through the simulation were larger than the measured data, the transition rule 
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parameters were reduced. Similarly, if the simulated area expansion rates 

were lower than measured rates, these parameters were increased.   

    After the transition rule parameters were selected, the model was used to 

predict the linear expansion rates of the leaf over time. These predicted rates 

were compared with measured linear expansion rates, to determine the 

accuracy of the simulation. The comparisons between predicted values and 

measured linear expansion rates are shown in Fig. 4.5-4.7.  

    The predicted rates correspond well with the measured data for clover and 

tobacco leaf. A relationship of y = 0.9416x – 0.1857 with an r2 value of 0.94 was 

found for the clover leaf data and a relationship of y = 1.25x – 24.69 with an r2 

value of 0.85 was found for the tobacco leaf data. The gradient of the graphs 

are close to 1, indicating that the model is an accurate representation of leaf 

growth.  

    However, for the third set of data, pea leaf, the predicted rates had a larger 

deviance from measured values, with a relationship of y = 0.7739x + 7.525 and 

an r2 value of 0.56. The variations can be attributed to the choice of transition 

rules of the CA. The shape of the simulated leaf is dependent on the emphasis 

on growth placed on each direction, which is determined by the transition 

rules. Therefore, there may be several combinations of transition rule 

parameters which will result in similar areas, but have different lengths. 

    The results indicate that the cellular automata model can be used to predict 

linear expansion rates based on known area expansion rates. The accuracy of 

the predicted values is dependent on the chosen transition rules. However, the 
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model can be calibrated to produce accurate simulations for a chosen species, 

and can then be used for further calculations. 

    The process of selecting transition rule parameters based on area expansion 

rates was automated in the software package. A dialog box is displayed for the 

user to enter the required area expansion rate. The program iteratively adjusts 

the transition rule parameters and compares the simulated area expansion rate 

with the required rate. When the closest possible area expansion rate is 

obtained, the program runs the simulation. The predicted linear expansion rate 

and the visual model of the growing leaf are displayed to the user. 
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Fig. 4.5 Comparison between predicted and measured linear expansion rates for clover  
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Fig. 4.6 Comparison between predicted and measured linear expansion rates for   
             tobacco leaf 
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Fig. 4.7 Comparison between predicted and measured linear expansion rates for pea  
             leaf 
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4.3 Simulation of Complex Shapes 

    The cellular automata model was modified to simulate shapes with varied 

distributions in growth rate, using the method described in section 3.1.2. The 

leaf was divided into three sections, with different transition functions defined 

for each section. The simulation was performed using the initial leaf shape 

shown in Fig.4.8. The output of the simulation after several time-steps is 

shown in Fig.4.9. The leaf correctly expanded along the three directions 

specified. This indicates that the method used is effective for simulating leaves 

with varying growth behaviour in different sections. 

 

Fig.4.8 Initial complex shape used (scale expanded for ease of viewing) 

(different colours represent different sections) 

     

           time = 10 steps                    time = 30 steps   

Fig.4.9 Output of complex shape simulation   
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4.4 Effect of damage to leaf 

    The growth of a leaf can be affected by numerous factors, such as insect 

attacks. Therefore, it is of interest to model leaf growth under these different 

conditions. The effect of different conditions on leaf growth has been studied 

by several sources, including Wolf et al. (1986), in which the relative growth 

rates of different sections of a normal and a malformed leaf were compared.  

    The cellular automata model was extended to incorporate the effects of 

insect attacks and other damage to the leaf surface, by modifications to the 

states of the CA cells. The states of affected cells were set to a permanent 

non-growing state, representing sections of the leaf which were damaged. The 

values of the affected cells were set to 0. The simulation was then allowed to 

proceed, using the normal transition rules. The result of the simulation after a 

small section of the leaf was damaged is shown in Fig.4.10.  

              

       
                         time = 35 steps               time = 50 steps 

 
 

Fig. 4.10 Output after small damage to the leaf occurred at time 35 steps 
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    The result of the simulation after a bordering section of the leaf was 

damaged is shown in Fig.4.11. Initially, the damage results in abnormal growth, 

similar to an actual leaf. However, after some time, the leaf forms a new 

border, which is not as would be expected of actual leaf behaviour. This is due 

to the localised properties of cellular automata, in which cells in different 

areas are unaware of damage to non-neighbouring cells. Therefore, the cellular 

automata system proposed seems appropriate for the simulation of the effect 

of small damages to the leaf surface, but not for larger damages involving the 

leaf border. 

                  
                       time = 30 steps            time = 40 steps 
 

                                     
time = 50 steps 

 
Fig. 4.11 Output after bordering section of leaf is destroyed at time 30 steps. 
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4.5 General Discussion 

    The results of the simulations performed using the cellular automata model 

indicate that the model is a good representation of leaf expansion. The linear 

expansion rates predicted using the model corresponded closely with measured 

data. This indicates that the growth rates and leaf shapes produced by the 

model are similar to the properties of growing leaves. The growth of leaves is a 

physical system, whereas simulation methods are numerical systems. This poses 

inherent difficulties associated with fitting numerical values to the physical 

entities. An example of such a difficulty is the precision of the step increment 

amounts for the values of the CA cells, which can affect the behaviour of the 

simulation. A low degree of precision results in an inaccurate representation of 

leaf growth, whereas high precision can lead to oscillating effects inherent in 

numerical systems. This indicates that an appropriate level of precision must 

be found to match the physical system with a numerical system. The results 

obtained in this study indicate that the representation of some properties of 

physical systems, such as of a growing leaf, can be made possible with 

numerical values.  

    The expansion of leaves of different species with variations in shape can be 

simulated by modifications to the model transition rules. Similarly, the effect 

of small damages to the leaf surface can be simulated by changes to the CA 

states of the affected cells. However, the model was unable to accurately 

simulate the effects of larger damages. Overall, the cellular automata model 

can effectively simulate the expansion of leaves. 
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    The cellular automata system developed is capable of representing the 

spatial and temporal behaviour of the expansion of leaves. The model would 

therefore be beneficial for agricultural purposes requiring outputs of yield to 

be produced for continuously varying inputs. Crop growth models, such as 

GRASSMAN (Scanian and McKeon 1990) and PLANTGRO (Hackett 1991) produce 

such outputs. To be used in such systems, the model could be calibrated to 

perform simulations of ideal leaves for a particular species, using field 

measurements. The growth of leaves in the field could then be compared to 

the output of the simulation, enabling modifications to be made to improve the 

final leaf properties. Using a model for leaf expansion allows improvements to 

be made at earlier stages of leaf growth.  

    The system developed would be beneficial for precision farming techniques. 

Precision farming requires a large number of decisions to be continually made 

over time, based on environmental, economic and growth factors (Clark and 

McGuckin 1996). An automated system is essential for such a system. The 

cellular automata model could be easily integrated into a precision farming 

system, to aid in decisions involving leaf expansion.   

    Further studies on the application of cellular automata to leaf expansion 

could involve improvements to the states and transition rules used in the 

system, to further reflect the measured properties of leaves in the field. The 

effect of different conditions to the growth of the leaf, such as drought, could 

be incorporated into the model, allowing the model to aid in studies of these 

situations. 
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CHAPTER 5 

CONCLUSIONS 

    The physical system of leaf expansion can be effectively simulated using the 

cellular automata method. The model developed in this study was able to 

accurately simulate the growth of leaves, by assigning numerical values to leaf 

properties. By appropriately selecting the precision of the step increment 

values, the calculated output can further be improved to reflect the natural 

leaf growth patterns. The cellular automata system developed would be 

beneficial for use in precision farming systems, where an automated system is 

necessary to provide continuous results for varying inputs. As the cellular 

automata model can simulate rapidly changing behaviour of leaves, this system 

can be an appropriate tool for performing such system integrations. Future 

studies in this area could involve the inclusion of the impact of environmental 

effects on the leaf.  
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APPENDIX A – SOURCE CODE 

 
    The source code for the software package developed can be downloaded 

from the Innovation Expo 2003 website: 

http://innovexpo.itee.uq.edu.au/2003/exhibits/s363324 
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